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The article presents the initial experience (spring-summer 2023) of using artificial neural 

networks (ANN) in improving traffic management in the large Russian city of Tyumen. Using 

the example of one of the intersections of the city's road network, it is shown how much 

transport delays are reduced when the duration of the traffic light cycle phases is quickly 

adjusted to the actual traffic intensity when compared with the usual previously used traffic 

light predictive mode. For the specific intersection of Odesskaya and Kotovskogo streets in 

Tyumen, considered in this article, the traffic light control mode using an ANN can 

significantly (by 20.6 ... 22.4%) reduce the average delay time of vehicles. It is also important 

that the reduction in traffic delays, which is possible with the regulation of traffic using ANN, 

helps to reduce stress for road users and improve road safety. The article presents historical 

data illustrating the dynamics of changes in the field of traffic management and road safety in 

Tyumen. This information well confirms the thesis about the dialectic of systemic development 

and the need for a gradual increase in the intellectual component in traffic management in 

large cities. The Applications (Appendix A and Appendix B) present the code of the auxiliary 

procedures and functions module and the code of the main data collection module used to 

optimize the traffic light control mode at the experimental intersection of the Tyumen road 

network. The main conclusion of the study is that use of an ANN allows taking into account a 

much larger number of factors and optimizing the control of the entire object, consisting of 

several intersections, which is not achievable using predictive modes and local adaptive 

control. 

Keywords: Management of road traffic; Traffic light control; Artificial neural networks; Safety 

of road traffic; City traffic efficiency; Tyumen (Russia) 

1. Introduction 

In 1914, Cleveland’s police department 

installed a red and green traffic control light at the 

corner of 105-th Street and Euclid Avenue, the first 

permanent installation in the world [1]. Since 

then, the practice of using traffic lights in traffic 

control has rapidly spread throughout the world. 

Over the next century, the basic paradigm in the 

field of road safety science and its companion field 

of "traffic management" changed several times [2]. 

In the 2000s, the policy of mandatory use of the 

Intelligent Transportation System (ITS) took root 

in the practice of traffic management in the largest 

cities of the world [3], [4]. At the same time, we 

should note that this thesis is far from being true 

for all cities in the world. In the Russian 

Federation, for example, there are 1118 cities (in 

which 75.5% of the country's population live), but 

the ITS functions to one degree or another only in 

some cities with a population of more than 1 

million people [5], [6].  

Tyumen is a large Russian city with a 

population of 855.6 thousand people (2023), the 

transport system of which is managed by the 
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specialized company «Tyumengortrans» 

(Tyumen City Transport) (https://tgt72.ru/). One 

of the tasks of this company is putting modern 

traffic control technologies into practice. The 

specialists of «Tyumengortrans» work together 

with the employees of the Industrial University of 

Tyumen. This article discusses one example of 

such collaboration - the use of artificial neural 

networks in optimizing the control of traffic lights. 

It is important to note that using machine learning 

and artificial neural networks (ANN) in 

organizing traffic light regulation in Tyumen is a 

relatively new thing.  The city uses modern 

systems of coordinated and adaptive traffic light 

control, however, there is a known problem of 

using local adaptive traffic light control - such a 

controlled intersection must be located at a 

considerable distance from others that are in 

coordinated control mode. Local adaptive control 

leads to the fact that the cycle time is not constant 

and coordination between adjacent signalized 

intersections becomes impossible. The use of 

ANN makes it possible to use the optimal 

operating mode of a traffic light for a given 

duration of the traffic light control cycle or to 

control a group of neighbouring controlled 

intersections at once, which eliminates the 

problem of using independent local adaptive 

control at neighbouring intersections. Of the 428 

traffic lights in the city, ANN-based regulation of 

the operating modes has been tested only on 15 of 

them, and they are far from being the most 

complex in terms of functionality. However, work 

in this direction continues. 

The implications of this important work are 

multi-faceted. On the one hand, under the 

conditions of the rapid growth of motorization in 

Tyumen (A2000 ≈ 150 vehicles/1000 people; A2023 ≈ 

495 vehicles/1000 people), traffic flow rates are 

quite stable and do not decrease; traffic jams are a 

relative rarity and are associated mainly with one-

time cases of a sharp deterioration in weather 

conditions. On the other hand, road traffic 

accidents in the city are gradually decreasing. 

However, these processes are very heterogeneous. 

Thus, in 2015 ... 2022, the level of Human risk HR 

in the city decreased from HR2015 = 7.0 RTA 

deaths/100 thous. people down to HR2022 = 4.8 RTA 

deaths/100 thous. people (http://stat.gibdd.ru/). 

At the same time, the RTA severity level (Severity 

RS 2015 = 2.1; Severity RS 2022 = 2.0) in Tyumen has 

remained stable in recent years. 

The purpose of this article is to familiarize the 

scientific community with the results of training 

and application of artificial neural networks 

(ANN) in the management of traffic lights in the 

large Russian city of Tyumen. The key tasks of the 

article include analysing the impact of the traffic 

light cycle optimization on the behavior of road 

users and, as a result, on road safety.   

 

2. Literature Review 

The Intelligent Transportation System (ITS) is 

an essential component of the Smart City 

infrastructure [7]. The basis of the ITS are 

information and communication technologies of 

Big Data [8]. The most important task of the ITS is 

to ensure the collection and processing of data on 

traffic flows with subsequent analysis of the 

possibilities for the most effective traffic 

management [9], [10]. The result of this analysis is 

a traffic forecast [11], [12]. Usually, the process of 

traffic forecasting (the most probable traffic flow 

rate, possible deviations from the probabilistic 

scenario) is based on taking into account historical 

observational data [13]. Theses data can be useful 

in applications such as traffic congestion control 

and traffic light regulation [14]. For example, one 

of the possibilities of the ITS is to calculate the 

probability of a traffic jam on the corresponding 

section of the road and provide the possibility of 

preparing for such a scenario [15].  

Traffic forecasting methods are usually 

classified into parametric (including stochastic 

and time methods) and non-parametric. The 

nonparametric ones primarily include machine 

learning (ML) models [16]. A review made in [17] 

showed that non-parametric algorithms are 

significantly superior to parametric algorithms 

due to their ability to handle a large number of 

parameters in massive data. 

The transition from the local level of the 

intelligent transport system to the network one 

became possible, among other things, thanks to 

the development of machine learning and 

artificial neural networks (ANNs) [18], [19]. This 

technology can be used to detect road anomalies 

[20] using GPS and smartphone acceleration data. 

In addition, the more frequent use of video 

cameras in cities has allowed the use of image 

recognition systems to count the number of cars 
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[21]–[23]. The study of the possibility of using 

machine learning to determine these anomalies 

[24] also provides an analysis of possible machine 

learning algorithms with their advantages and 

disadvantages in solving this problem. In 

addition, the possibility of controlling traffic lights 

based on machine learning models and the 

Internet of Things has been repeatedly considered 

[25]–[28].  

The use of machine learning and artificial 

neural networks for adaptive control of traffic 

lights can be divided into systems with one and 

multiple agents for training a neural network. The 

study [29] considers the practice of using machine 

learning to implement adaptive control of traffic 

lights in a certain space of an urban area. One of 

the shortcomings of this approach given in the 

study is that all agents in the model must maintain 

a constant connection with the knowledge 

container, which imposes certain restrictions. 

Systems in which each individual intersection is 

an agent and an artificial neural network 

processes the data received from each agent 

demonstrate high efficiency [30]. So, in [31] the use 

of a neural network to control a traffic light cycle 

at an areal object consisting of 9 intersections of 

the city's road network was able to increase the 

speed of the traffic flow by 43.02% and reduce the 

delay time at intersections by 26.59%. 

Under the conditions of non-uniform daily and 

hourly traffic flow rate, the problem of optimizing 

the parameters of the traffic light control cycle at 

the intersections is solved either by developing a 

large number of predictive signal plans, or by 

using adaptive control. Despite the fact that 

developing a large number of signal plans 

covering a wide range of vehicle and pedestrian 

traffic flows is theoretically possible, in practice, 

from 3 to 5 signal plans are used during the day in 

most Russian cities. Taking into account the non-

uniform daily and hourly traffic flow rate, these 

signal plans do not always provide the optimal 

mode of operation of traffic lights for these 

conditions. 

A limited number of predictive signal plans, 

coupled with deviations in traffic parameters 

associated with repairing road sections, road 

traffic accidents (RTA), and weather anomalies 

lead to an increase in traffic delays at a signallised 

intersection. The use of automated traffic control 

systems (ATCS) makes it possible to redistribute 

the available time reserves in real time by 

changing the duration of the traffic light control 

cycle and the values of phase coefficients. 

 

3. Materials and Methods 

3.1. Model example  

Let us consider a specific example of traffic 

management at the intersection of Odesskaya and 

Kotovskogo streets in Tyumen. 

As of the spring of 2023, the movement of 

vehicle and pedestrian flows was organized 

according to a 3-phase scheme (Figure 1). 

The duration of each phase in the traffic light 

cycle is shown in Table 1. The total duration of the 

traffic light cycle in the daytime was 95 seconds. 

In the spring of 2023, this intersection in 

Tyumen was chosen as an experimental one to 

implement adaptive control of traffic lights using 

machine learning and artificial neural networks. 

Preliminary studies were carried out on the 

vehicle and pedestrian traffic flow rates. An 

assessment of the traffic flow rate variability in the 

 

Table 1. Mode of operation of traffic lights in the daytime (6:00 – 22:00 on weekdays; 9:00 – 22:00 on the weekend) 

№№ of 

directions 

№№ of 

traffic 

lights 

Schedule of traffic lights operation modes 

Phase 1 Phase 2 Phase 3 

1 
t1, t2, t5, 

t6 
31 

3 
3 56 

2 

  

2 
t3, t4, t7, 

t8 
37 

2 
31 

3 
3 19 

  

3 
p11, p12, 

p15, p16 
78 10 

3 
4 

 

4 
p9, p10, 

p13, p14 
78 10 

3 
4 

 

Duration of phases, 

secs. 
39 39 17 
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Figure 1. Phase-by-phase traffic schemes at the intersection: (a) Phase 1; priority direction of vehicle traffic: North 

– South, (b) Phase 2; priority direction of vehicle traffic: West – East, (c) Phase 3; directions of pedestrian traffic 
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morning hours (from 07:00 to 09:00) at the 

intersection of Odesskaya - Kotovskogo streets on 

various days (weekdays) in the spring of 2023 

showed that this indicator varies in the range from 

1245 to 1850 vehicles/hour. At the same time, it is 

technically possible for the traffic control center to 

receive data from transport detectors every 15 

minutes. Despite this frequency of obtaining up-

to-date data on traffic flow rates, in practice, the 

predictive traffic light operation mode is 

calculated for the hour of the highest traffic flow 

rate (from 07:00 to 08:00) and is valid for two hours 

(from 07:00 to 09:00). The signal plan is calculated 

for the average traffic flow rate, which in this case 

is 1593 vehicles/hour. Analysing the data 

indicated that it is advisable to use the traffic flow 

rate data presented in Table 1 for the predictive 

mode of operation of the traffic light. 

Characteristic of the predictive mode of operation 

of the traffic light, calculated in the Lisa+ software 

package [32], is also presented in Table 2. 

The traffic light operating mode presented in 

Table 1 is the main one and is used from 6:00 to 

22:00 on weekdays and from 9:00 to 22:00 on 

weekends. Of course, during the day, traffic 

conditions, in particular traffic flow rate, are 

constantly changing and this signal plan cannot 

theoretically be optimal for all hours of the day. 

So, the predictive mode of operation of a traffic 

light is considered as the base one, against which 

other possible options for traffic control will be 

compared. 

 

3.2. Modelling Options 

Under the conditions of a non-uniform 

intrahour traffic flow rate, three ways to control 

the operation of traffic lights at the intersection 

can be compared: 

• Predictive mode (Table 1), valid until summer 

2023; 

• Adaptive traffic light control mode based on 

the predictive mode; 

• Traffic light control using a pre-trained ANN 

for this intersection. 

Adaptive and neural network optimization 

options for the traffic light cycle are promising 

solutions for most Russian cities. Their 

comparison on a specific case allows us to draw 

the conclusions necessary for making the final 

management decision about choosing the priority 

method of traffic management in the city. 

Vehicle delay time was estimated on a 

calibrated simulation model of an X-shaped 

intersection in PTV Vissim 11 [33]. 

 

3.2.1. Adaptive Mode 

In recent years, in Russia, the most common 

way to improve the efficiency of the controlled 

intersections is to use adaptive traffic light control 

modes based on the possibility of reducing the 

duration of the main traffic light cycle in the event 

of a traffic flow gap lasting more than 3 seconds. 

In our case, the cycle of traffic light control 

consists of three phases (two vehicle and one 

pedestrian) and the movement of cars in opposite 

directions is carried out in one phase. The 

algorithm checks for the presence of a gap in two 

opposite directions simultaneously. This 

approach allows one to change the values of the 

phase coefficients in real time. This results in a 

decrease in the average delay time of vehicles at 

the intersection and approaches to it. Based on the 

predictive mode, an adaptive control algorithm 

was developed in the Lisa+ software package [32] 

that makes it possible to reduce the duration of the 

main cycle in the event of a 3-second time gap 

between cars following each other (Figure 2).  

 

3.2.2. Artificial Neural Network (ANN) Mode 

As an alternative to the adaptive mode of 

traffic light control at the intersection under study, 

let us consider the use of a pre-trained artificial 

neural network (ANN). The neural network 

model was created in several stages: 

 
Table 2. Characteristics of the predictive mode of operation of the traffic light (the duration of the traffic light 

cycle is 95 seconds) at the intersection of Odesskaya - Kotovskogo streets in Tyumen 

Direction of vehicle 

movement 

Traffic flow rate, 

vehicles/hour 

No. of  

cycle phase 

Phase 

coefficient 

North 580 
1 0.45 

South 305 

East 481 
2 0.36 

West 227 

Pedestrians 850 3 0.19 
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Figure 2. General view of the adaptive control algorithm in Lisa+ [32] 

 

• Creating a data array containing various 

parameters of the traffic light cycle and traffic 

(traffic flow rates in all directions, vehicle 

traffic routes at the intersection); 

• Collecting average delay time values at the 

intersection through simulation in PTV Vissim 

[33]; 

• ANN architecture planning and training. 

The training was carried out on a sample size 

of 11,000 combinations of different values of the 

rate of the incoming flow and the parameters of 

the traffic light control cycle. As a result of this 

training, a model was obtained that allows real-

time determination of the optimal signal plan for 

any combination of vehicle traffic flow rate values 

by directions. 

To determine the optimal cycle parameters, a 

separate software module was developed that 

takes the values of traffic flow rates by directions 

and creates a data array with different signal plans 

with a given interval of changing the duration of 

the main cycles. Next, the trained neural network 

model calculates the average delay time for each 

signal plan. The obtained values are sorted and 

the traffic light cycle parameters that are optimal 

for a given traffic flow rate are displayed in a 

separate file. Sorting and determining the optimal 

mode are subject to the objective Eq (1): 

 
Tdelay  → min (1) 

 

The time spent on one iteration of the 

calculation of the average delay time ranges from 

0.1 ms up to 0.5 ms (for an option based on PC 

with Core i7, 8 GB RAM). For comparison, the 

time to obtain the average delay time in PTV 

Vissim takes from 10 to 30 seconds. With pre-

prepared possible options for the traffic light 

operation mode, the software module spends no 

more than 5 seconds to derive the optimal cycle 

parameters, processing thousands of possible 

combinations. The obtained values can be directly 

transmitted to the controller of the traffic light or 

to the traffic control center. 

Since data from traffic detectors are received 

by the traffic control center every 15 minutes, the 

http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/index


© Andoko Andoko et al. 

Automotive Experiences  534 
 

comparison of the effect of different control 

methods was carried out by estimating the 

average delay time for the whole model for each 

fifteen-minute time interval during the hours of 

the greatest traffic flow rate from 07:00 to 09:00: 00 

(Table 3). 

 

4. Automatic Data Collection Technology 

with PTV Vissim 

The technology for creating a neural network 

model of a signallised intersection can be divided 

into the following stages: 

• Creating a simulation model in PTV Vissim 

[33] and defining input parameters. 

• Determining input parameter ranges and 

collecting big data through simulation. 

• Processing the results obtained. 

• Neural network training. 

At a local intersection, the input parameters 

are: incoming flow rates by directions, shares of 

the incoming flow by directions, parameters of the 

traffic light control cycle (number of phases, phase 

coefficients, cycle duration). For linear and areal 

objects, vehicle routes and the offset of the starts 

of traffic light control cycles are added. The 

intervals of the values of these parameters should 

not only take into account statistically probable 

values, but also go beyond these limits for more 

accurate training of the model. When developing 

a data set for simulation modeling, an xls table is 

filled. With the help of MS Excel tools, both 

random and ordered sets of input parameters are 

created. The explanation of the column names is 

given in Table 4. 

In the case of linear or areal objects, the number 

of input parameters increases. Along with this, the 

number of parameter sets should increase due to  

 

Table 3. Traffic flow rates by directions 

№ Time intervals 
Traffic flow rate, vehicles/hour by directions 

North South East West 

1 7:00 - 7:15 465 254 423 206 

2 7:15 - 7:30 551 284 465 208 

3 7:30 - 7:45 631 321 510 238 

4 7:45 - 8:00 673 361 526 256 

5 8:00 - 8:15 628 327 510 236 

6 8:15 - 8:30 598 340 507 252 

7 8:30 - 8:45 576 284 469 221 

8 8:45 - 9:00 518 269 438 199 

 

Table 4. Explanation of the column names in the input dataset for simulation modeling 

No 
Column 

name 
Explanation Range of values 

1 num Sequence number of the set of input parameters 1… n 

2 n_1_1 Flow rate of incoming traffic flow 1 at intersection 1 50 – 1000 

……………………………………………………  

5 n_1_4 Flow rate of incoming traffic flow 4 at intersection 1  50 – 1000 

6 phase_1_1_

num 

Sequence number of traffic light cycle phase for signal group 1 at 

intersection 1 

1 

7 t_green_1_1 Duration of signal group 1 at intersection 1  8 – 40  

……………………………………………………  

14 phase_1_5_

num 

Sequence number of traffic light cycle phase for signal group 5 at 

intersection 1  

1 – 2  

15 t_green_1_5 Duration of signal group 5 at intersection 1  8 – 40 
16 share_1_1_1 Share of static route 1 of incoming traffic flow 1 at intersection 1 0.05 – 0.95 

17 share_1_1_2 Share of static route 2 of incoming traffic flow 1 at intersection 1 0.05 – 0.95 

18 share_1_1_3 Share of static route 3 of incoming traffic flow 1 at intersection 1 0.05 – 0.95 

……………………………………………………  

25 share_1_4_1 Share of static route 1 of incoming traffic flow 4 at intersection 1 0.05 – 0.95 

26 share_1_4_2 Share of static route 2 of incoming traffic flow 4 at intersection 1 0.05 – 0.95 
27 share_1_4_3 Share of static route 3 of incoming traffic flow 4 at intersection 1 0.05 – 0.95 
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the increase in the number of possible 

combinations. The combinations should take into 

account the distributions of parameters that are 

impossible in practice, for example, the 

unevenness of incoming flows by directions (1000, 

1000, 1000, 50 vehicles/hour). 

Big data is collected for model training 

automatically using scripts written in the Python 

programming language. The most robust and 

user-friendly operation is achieved using the three 

scripts: 

a. Main script 

Provides reading data from an array of input 

parameters, changes the parameters of the traffic 

flow in PTV Vissim, starts the simulation, and 

writes data to the output file. 

b. Script with a set of custom functions 

It contains functions for changing the 

parameters of the traffic light control cycle and 

reading the simulation results from the SQLite3 

database file generated by PTV Vissim after each 

simulation. Using select functions allows you to 

make the code of the main script more readable. 

The main user functions are: 

• Reading and writing values to the signal PTV 

Vissim program file (*.sig); 

• Reading a database file with simulation 

results. 

Work with the *.sig is done using the XML 

markup of the file. To do this, the specified tags 

are searched in order and the start and end times 

of each signal group are indicated. To transfer 

from the sequence numbers and phase durations 

from the initial data set to the markup format of 

the PTV Vissim signal program, the values are 

recalculated in the function. 

c. PTV Vissim operation control script in case it 

freezes 

Controls the resizing of the output file. If the 

file size has not changed within the specified time, 

PTV Vissim is forced to restart. The simulation 

that caused the error in this case is skipped and 

work continues with the next set of input data (a 

row in the input data table). 

The work of the main script with input 

parameters is carried out using the Pandas library. 

Starting PTV Vissim, changing the parameters of 

the traffic flow and simulating are performed by 

connecting the script via the COM server. To 

launch PTV Vissim and set the fast simulation 

mode the following code was used: 

Vissim=com.gencache.EnsureDispatch("Vissim.Vissi

m.11") 

Vissim.LoadNet (Model_Path) 

Vissim.Graphics.CurrentNetworkWindow.SetAttVal

ue("QuickMode",1) 

 

Next, a loop is initiated (the number of 

iterations is equal to the number of rows in the 

original data set), in which the following actions 

are performed (Figure 3): 

a. Changing the values of incoming flows in the 

simulation model through a nested loop 

(n_1_1, …, n_1_4). The change is made using 

COM and the PTV Vissim function 

«Vissim.Net.VehicleInputs.ItemByKey(i).SetAttVa

lue», where i is the sequence number of the 

incoming flow in the simulation model. 

b. Changing the shares of static routes in the 

simulation model (share_1_1_1, …, 

share_1_4_3). The change is made using COM 

in the same way as changing the values of 

incoming flows. 

c. Changing the parameters of the traffic light 

control cycle using a script with a set of user 

functions (phase_1_1_num, t_green_1_1, …, 

phase_1_5_num, t_green_1_5). 

d. Running a simulation. 

e. Reading simulation results with a custom 

function. 

f. Writing to a file with output data. 

 

The script generates an output file with a table, 

the number of rows in which is equal to the 

number of rows in the table with the input 

parameters (except for the rows that caused PTV 

Vissim to freeze). 

The following columns are added to the output 

file: arg_timeinterval, arg_vehicleclass, object_id, 

delayavg, stopsavg, speedavg, delaystopavg, 

disttot, travtmtot, delaytot, stopstot, delaystoptot, 

vehact, veharr, arg_timeinterval, object_id, 

delaylatent, demandlatent, demandlatentbase. 

The values of these columns determine the 

parameters of the PTV Vissim simulation results 

for each iteration. 

Preliminary processing of the obtained results 

is performed using the Python and the Pandas 

library and is divided into the following stages: 

a. Accounting for undesignated vehicles. 

b. Converting shares of static routes into 

numerical values of traffic flow rate. 
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Launching PTV Vissim via COM

Reading input data

Are there rows in the data array?

Changing the values of incoming flows and 

static routes in PTV Vissim via COM

Changing the values of the traffic light cycle 

parameters in the supply *.sig file

Running a simulation

Reading Simulation Results

Clearing Past Simulation Results

Writing results to the output dataset

Writing results to the output dataset

 
Figure 3. Flow chart of the data collection algorithm 

 

Accounting for undesignated vehicles is 

carried out by mathematical calculations: 

df['total_flow']=df['DEMANDLATENT']+df['VEH

ACT']+df['VEHARR'] 

df['total_delay_time']=(df['DELAYLATENT']+df['D

ELAYTOT'])/3600 

df['avg_delay_time']=3600*df['total_delay_time']/df['

total_flow'] 

df['DELAYAVG'] = df['avg_delay_time'] 

Thus, after conversion the 'DELAYAVG' 

column contains data on the average delay time, 

taking into account undesignated vehicles. 

Shares of static routes are converted into 

numerical values of traffic flow rate by 

multiplying the rate of each incoming flow by the 

share of a particular route. A nested loop is used 

to reduce the amount of coding. 

The neural network is built on the basis of the 

Keras libraries for TensorFlow [34]. The average 

delay time (DELAYAVG) is used as the output 

value. The factors are the values of the parameters 

of the traffic flow and the traffic light cycle (Table 

5).  

In this particular example, the duration of the 

last signal group is not taken into account. This 

group implies a dedicated pedestrian phase and 

its duration is constant (20 seconds). Additionally, 

the factors do not include the incoming flow rate, 

since traffic flow rates on static routes take it into 

account. 

The neural network architecture implies an 

input layer with the number of neurons equal to 

the number of factors, one or more hidden layers, 

and an output layer with one neuron that 

determines the value of the average delay time. 

An example of an architecture with one hidden 

layer is shown in Figure 4a. In this case, the hidden 

layer contains 43 neurons connected to 21 input 

neurons (by number of factors). When training a 

neural network, the loss function and the number 

of generations are determined (Figure 4a).  

To solve different types of problems, networks 

of different architectures with different numbers 

of layers and neurons are used. In addition, the 

type of neuron activator affects the accuracy of the 

model (Table 6).  

 
Table 5. List of factors for neural network training 

No Column name Explanation 

1 phase_1_1_num Sequence number of traffic light cycle phase for signal group 1 at intersection 1 

2 t_green_1_1 Duration of signal group 1 at intersection 1 

…………………………………………………… 

9 phase_1_5_num Sequence number of traffic light cycle phase for signal group 5 at intersection 1 

10 share_1_1_1 Traffic flow rate of static route 1 of incoming flow 1 at intersection 1  

11 share_1_1_2 Traffic flow rate of static route 2 of incoming flow 1 at intersection 1  

12 share_1_1_3 Traffic flow rate of static route 3 of incoming flow 1 at intersection 1  

…………………………………………………… 

19 share_1_4_1 Traffic flow rate of static route 1 of incoming flow 4 at intersection 1  

20 share_1_4_2 Traffic flow rate of static route 2 of incoming flow 4 at intersection 1  

21 share_1_4_3 Traffic flow rate of static route 3 of incoming flow 4 at intersection 1  
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Figure 4. Neural network architecture and training through loss function: (a) Neural network architecture with 

one hidden layer; (b) Neural network training through loss function 

 

Table 6. Neural network accuracy (50 generations; sample size: 19321 sets of values; test sample: 20% of the total 

number) 

No 
Number of hidden layers, 

units  

Total number  

of neurons, units 

Activator  

type 
Model accuracy (R2) 

1 1 65 relu 0.703 

2 1 65 tanh 0.602 

3 1 65 linear 0.199 

4 2 152 relu 0.879 

5 2 152 tanh 0.708 

6 2 152 elu 0.838 

7 2 152 selu 0.579 

8 2 152 softmax 0.801 

9 3 327 relu 0.866 

10 3 327 elu 0.861 

11 3 327 softmax 0.794 

12 4 678 relu 0.827 

13 4 678 elu 0.798 

 

When working with an individual intersection, 

the best accuracy is provided by a neural network 

with two hidden layers. The activation function 

«relu» shows the best result among other 

functions. 

After training the model, it should be saved as 

a separate file, which will be used in the future to 

solve the inverse problem of determining the 

optimal parameters of the traffic light control 

cycle. To determine these parameters, it is 

necessary to determine the traffic flow rates and 

shares of static routes. Further, by means of a 

nested loop, a data set is created, where n_1_1, …, 

n_1_4, share_1_1_1, …, share_1_4_3 are constant, 

and the durations of permitting signals change in 

a given range with a given interval in various 

combinations of signal groups. For example, when 

changing the duration of the permitting signal in 

the range from 10 to 60 seconds with a change 

interval of 5 seconds, taking into account the 

filtering of duplicates, the data set has 11100 

different combinations of signal plans. 

Next, the previously trained model determines 

the value of the average delay time for each signal 

plan. Unlike PTV Vissim, calculations based on a 

trained neural network are performed almost 

instantly (Figure 5). The signal plan with the 

minimum average delay time is exported to a 

separate file. 

With the practical implementation of this 

technology, we can directly input data from 

transport detectors and directly output cycle 

parameters to the controller of a traffic light object. 

Under the conditions of non-uniform daily and 

hourly traffic flow rates, the task of optimizing the 

parameters of the traffic light control cycle at  
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Figure 5. Advantage of mathematical simulation using a neural network 

 

intersections is reduced either to the development 

of a large number of predictive signal plans, or to 

the use of adaptive control. Despite the theoretical 

possibility of developing a large number of signal 

plans covering a wide range of traffic flow rates, 

deviations are always possible in the form of 

repair of the road section, accidents, and 

meteorological factors. Various adaptive control 

methods often show their superiority over the 

predictive mode at a particular local intersection. 

However, to solve optimization problems on areal 

or linear objects, the use of local adaptive control 

has a lower efficiency in comparison with the 

optimal predictive mode. Predictive modes at 

objects with several signallised intersections are 

quite laborious in calculations due to the large 

number of factors that must be taken into account 

(Figure 6). Therefore, such objects rarely utilise 

more than four or five predictive modes.  

On an areal object, to determine the optimal 

parameters of the traffic light control cycle at each 

intersection and the value of the cycle start offsets, 

it is necessary to take into account the rates of 

incoming flows (n_1_1, n_2_1, etc.), the 

distribution of flows at each intersection (D_1, 

D_2, etc.), and the traffic flow rates along the 

routes (r_1_2, r_8_3, etc.). Machine learning and 

neural networks make it possible to create 

mathematical models that take into account such 

a number of input parameters. 

 

 
Figure 6. Traffic parameters on an areal object 
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When using the simulation of a given object in 

PTV Vissim for training a neural network, it is 

possible to obtain a model that allows real-time 

determination of the optimal parameters of the 

traffic light operation mode for the entire section, 

which allows integrating this technology into a 

traffic control system (Figure 7).  

The use of a neural network trained for a 

specific object through the calculation and 

optimization module allows one to instantly 

obtain the optimal parameters of the traffic light 

operation mode, depending on the traffic 

parameters. Traffic parameters can be obtained 

from installed detectors or from video cameras (a 

pattern recognition system is required). In this 

case, the operator in the traffic control center 

performs a control function and acts as an 

observer. The operation of the software is 

described by the following steps: 

a. Receipt of data from transport detectors by the 

module of calculation and optimization. 

b. Calculation of the optimal cycle parameters. 

c. Transfer of the optimal cycle parameters via 

the module of interaction with the traffic light 

controller. 

d. Recalculation of the cycle and changing the 

parameters of the traffic light. 

Simulation modeling of the section is 

necessary when designing the system and 

upgrading it in case of a change in the traffic 

scheme (Figure 8).  

Despite the presence of simulation modeling in 

the system, it is used exclusively for training a 

neural network to create a digital mathematical  

 

 
Figure 7. Integrating neural network software into a traffic management system 

 

 
Figure 8. Scheme of software operation for a set of traffic lights in the city 
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twin of an intersection, a linear or areal object. 

When calculating a signal plan, simulation 

modeling by means of PTV Vissim [33] is not used. 

Modern computing power allows real-time 

calculations based on trained neural networks, 

which ensures uninterrupted optimization of the 

parameters of traffic light control cycles 

depending on the traffic situation. 

 

5. Results and Discussion 

For each of the eight fifteen-minute time 

intervals, the optimal cycle of traffic light control 

was determined using an ANN (Table 7). Further, 

the parameters of the traffic light operation mode 

and the values of the traffic flow rate were 

automatically transferred to PTV Vissim 11 [33] 

and the simulation process was initiated. The 

collection of simulation results was also carried 

out automatically. During the ANN operation, 

restrictions were introduced that did not allow 

increasing the cycle time to more than 95 seconds. 

For each time interval, except for 7:30-7:45 and 

8:00-8:15, the ANN determined a unique traffic 

light operation mode, taking into account the 

restrictions (maximum cycle duration, maximum 

duration of the main cycle for one of the 

directions) (Figure 9).  

As a result, for each 15-minute time interval, 

the values of the average delay time were 

obtained using the predictive mode and traffic 

control through the ANN (Figure 10). Table 8 

presents the comparative results of assessing the 

vehicle delay at the intersection calculated for two 

options (predictive - Table 1; using an ANN - Table 

6) of the traffic light management. The use of ANN 

control of a traffic light object makes it possible to 

obtain a significant reduction in the average delay 

time in the case of the maximum traffic flow rate 

and a slight reduction in delay in a number of 

cases with a low actual traffic flow rate.   

 

Table 7. Parameters of the traffic light control cycle obtained using an ANN 

No Time interval 
Phase coefficient Duration of traffic 

light cycle (s) Phase 1 Phase 2 Phase 3 

1 7:00 - 7:15 0.39 0.33 0.28 61 

2 7:15 - 7:30 0.41 0.35 0.24 71 

3 7:30 - 7:45 0.43 0.38 0.19 87 

4 7:45 - 8:00 0.44 0.38 0.18 94 

5 8:00 - 8:15 0.43 0.38 0.19 87 

6 8:15 - 8:30 0.42 0.38 0.20 85 

7 8:30 - 8:45 0.42 0.36 0.22 77 

8 8:45 - 9:00 0.41 0.33 0.26 66 

 

 
Figure 9. Ratio of the duration of the phases in the cycle, taking into account the vehicle actual traffic flow rate at 

the intersection 
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Figure 10. Comparison of the average vehicle delay time for traffic light control options using a predictive mode 

and a pre-trained ANN 

 
Table 8. Comparative results of assessing the vehicle delay at the intersection calculated for 2 options for 

managing the work of a traffic light object 

No Time interval 

Average vehicle delay time for different modes  

of traffic light cycle management (s) 

Predictive mode ANN 

1 7:00 - 7:15 35.7 22.4 

2 7:15 - 7:30 32.9 27.6 

3 7:30 - 7:45 41.9 31.5 

4 7:45 - 8:00 45.0 39.1 

5 8:00 - 8:15 41.1 31.0 

6 8:15 - 8:30 44.5 35.4 

7 8:30 - 8:45 35.9 32.2 

8 8:45 - 9:00 34.2 25.0 

 

Table 9 provides the values of the average 

vehicle delay at the intersection (in the morning 

hours of the day under conditions of a high traffic 

flow rate).  

ANN control shows a 22.4% decrease in delay 

time for the time interval 07:00-08:00 and a 

decrease in delay time by 20.6% for the time 

interval 08:00-09:00 relative to the predictive 

mode. Note that reducing the delay has a very 

positive effect on the environmental state of the 

city [35]. 

6. Historical Background of Traffic 

Management in Tyumen (Russia), its 

Impact on Traffic Safety and an 

Explanation of the Choice of Traffic 

Lights for the Development of 

Innovative Practices  

Tyumen is a good example of the dynamic 

development of both the city and its transport 

system. The population of the city for the period 

from 1956 to 2023 increased by almost 7 times  

 
Table 9. Values of the average vehicle delay time when using different methods of controlling a traffic light object 

at a controlled intersection 

Control method  
Average delay time by time intervals (s) 

07:00 – 08:00 08:00 – 09:00 07:00 – 09:00 

Predictive mode 38.9 38.9 38.9 

ANN 30.2 30.9 30.5 
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(from 125 thousand people to 855 thousand 

people) [36]. The level of motorisation during this 

time increased from 9 to 495 vehicles/1000 people; 

the structure and quality characteristics of the 

vehicle fleet have changed qualitatively [37]. The 

length of transport routes in the city has sharply 

increased and their quality has improved. 

Of course, the processes of traffic management 

in the city also proceeded very intensively.  

Table 10 shows the actual dynamics and its 

forecast regarding the development of traffic light 

control in the city for the period from 1970 to 2030.  

Data on the dynamics of motorisation and 

changes in the road traffic accident rate in Tyumen 

in 2000 ... 2023 are given in Table 11 [38]. It can be 

noted that the dynamics of Human risk in 2000 ... 

2023 fully corresponded to the well-known law of 

R. Smeed [39]. 

Comparing the data of Table 10 and Table 11, 

we can see that the dynamics of the increase in the 

number of traffic lights (+114%) in 2000…2022 is 

quite consistent with the growth in motorisation 

(+98%). Relative indicators of road safety (HR and 

RTA Severity) have decreased during this time by 

almost three times. 

At the same time, a slight increase in road 

safety indicators in the last three years (2022/2020) 

is of some concern. Perhaps this is one of the 

factors that significantly influenced the 

introduction of new methods of traffic 

management in 2023 (Control of traffic lights 

using a pre-trained ANN for a specific 

intersection). It is possible to assess the impact of 

the benefits of using ANNs in traffic management 

and its positive impact on traffic safety in relation 

to a specific object - the very intersection of 

Odesskaya-Kotovskogo streets, for which the 

research work was carried out. To do this, let us 

compare the statistics of accidents at the 

intersection over the past 4.5 years (2019…2023) 

(http://stat.gibdd.ru/).  

Thus, it can be noted that in Tyumen the start 

of work (spring 2023) on the gradual replacement 

of the adaptive mode of traffic light regulation 

with traffic light control using a pre-trained ANN 

was initiated, first of all, by the loss of pace in the 

process of reducing road traffic accidents (Table 

11). The choice of Tyumen intersections, for which 

this work began in the first place, is explained by 

the dynamics of the increase in road accidents 

recorded in recent years (Table 12).  

 
Table 10. Dynamics of the traffic light system development in Tyumen 

Characteristics  
Years 

1970 1980 1990 2000 2010 2017 2023 2030 

Number of traffic 

lights, units 
25 65 125 200 285 315 428 550 

Main mode of traffic 

light operation 
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Number of traffic 

lights in ATCS, units 
- - - - 85 240 374 550 

Note. Expert assessments of veterans of the transport sector (1970 ... 2010) and data from the specialized organization 

«Tyumengortrans” are given. (2017…2030) (https://tgt72.ru/) 

 
Table 11. Dynamics of motorisation and road traffic accidents in Tyumen [38] 

Characteristics 
Years 

2000 2005 2010 2015 2020 2022 

Motorisation, vehicles/1000 people 250 308 434 466 486 495 

Number of RTAs, units 889 1668 1397 1482 1356 1532 

RTA injuries, people 1062 2203 1902 2013 1909 2055 

RTA deaths, people 79 75 60 41 36 41 

Human risk, deaths/100 thous. people 13.9 13.9 10.3 7.0 4.5 4.8 

RTA severity, % 6.6 3.4 3.1 2.1 1.9 2.0 
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Table 12. Statistics of road traffic accidents at the intersection of Odesskaya - Kotovskogo streets (Tyumen) with a 

reformed traffic light control mode [8] 

Indicators 
Years 

2019 2020 2021 2022 half 2023 

Number of RTAs, units 1 1 1 2 0 

RTA injuries, people 1 1 1 4 0 

 

Perhaps it is important to explain the essential 

relationship between the results of neural network 

optimization of the duration of the traffic light 

cycle and its distribution by phases at a specific 

traffic light object at the intersection of Odesskaya 

and Kotovskogo streets and the actual accident 

rate. In the opinion of the authors, the main factor 

in reducing the accident rate at the intersection is 

a decrease in the emotional tone of drivers who 

are forced to waste time in a traffic jam [40], and, 

as a result, a positive effect of a qualitative change 

in the nervousness of road users on traffic safety 

[41]. 

 

7. Conclusions 

The practice of using artificial neural networks 

in managing traffic lights is still quite new for 

Russian cities. Only in a very small number of 

Russian cities [42] and regions [43] have any ITS 

elements been introduced to one degree or 

another. The practice of neural network 

programming of the modes of functioning of 

traffic lights in Russian cities is very innovative. 

However, the process of introducing the 

technology of using artificial neural networks in 

the management of traffic lights in most cities of 

Russia with a population of more than 500 

thousand people has already started and is 

gradually developing.  

One of the intersections in the city of Tyumen 

is an example of the development and 

implementation of a traffic light cycle control 

mode using an ANN. Based on the results of the 

research work, the following main conclusions 

can be drawn.  

a. The use of an ANN in the practice of 

optimizing traffic light cycles can dramatically 

increase the efficiency of traffic management 

and reduce the emotional stress of its 

participants. This has a positive effect both on 

increasing the traffic capacity of the road 

network and on reducing the road traffic 

accident rate. 

b. For the specific intersection of Odesskaya and 

Kotovskogo streets in Tyumen, considered in 

this article, the traffic light control mode using 

an ANN can significantly (by 20.6 ... 22.4%) 

reduce the average delay time of vehicles.  

c. In the case of an individual intersection, the use 

of an ANN can be replaced by the use of well-

established formulas and models in the 

transport sector for calculating traffic light 

cycle parameters based on traffic flow rate. 

However, in the case of linear and area objects, 

the application of the above formulas and 

models is reduced to finding the optimum for 

each individual intersection, and not for the 

object as a whole. The use of an ANN allows 

taking into account a much larger number of 

factors and optimizing the control of the entire 

object, consisting of several intersections, 

which is not achievable using predictive 

modes and local adaptive control. The use of 

the approach to control a traffic light object 

presented in this study can be considered as an 

independent alternative to traditional adaptive 

control, and as a technology for managing area 

or linear objects with several intersections. In 

this case, the number of factors and parameters 

increases multiple times and after training, the 

neural network model is able to control all 

traffic light objects at each intersection at once 

according to its target function. 

d. This article presents the results of controlling a 

traffic light based on a pre-trained ANN with a 

change in cycle parameters every 15 minutes. 

If it is technically possible to transmit data on 

the actual traffic flow rate for shorter periods 

of time or in real time, the effect of using an 

ANN in an intelligent transport system can 

potentially be much higher [44]–[46].  

e. The next stage of research in this area will be 

approbation of the technology on linear and 

areal objects with subsequent assessment of 

their effectiveness. 
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Appendix A 

The code of the auxiliary procedures and functions module 

import pandas  

def WriteToSig (sig_file_path, ds = pandas.Series): # write data to PTV *.sig file 

    import xml.etree.ElementTree as ET # *.sig file has XML structure 

    input_data_sig = [40,40,27,27,30] 

    input_data_phase = [1,1,2,2,3] 

    sg_count = 1 

    df = pandas.DataFrame(columns=['sg','phase','start','end']) 

    c = 0 

    pos = 0 

    while c < len(ds)-1: 

        input_data_phase[pos] = int(ds[c]) 

        input_data_sig[pos] = int(ds[c+1]) 

        c = c + 2 

        pos = pos + 1 

    phase_start = 0 

    for sg_count in range(0, len(input_data_sig)) : # cycle for calculate phases start/end points 

        df['start'].iloc[sg_count] = phase_start 

        df['end'].iloc[sg_count] = (phase_start + input_data_sig[sg_count] + 6) 

        if sg_count < len(input_data_sig)-1 : 

            if (input_data_phase[sg_count] != input_data_phase[sg_count+1])  : 

                if sg_count >0 : 

                    phase_start = max (df['end'].iloc[sg_count],df['end'].iloc[sg_count-1]) + 3 

                else: 

                    phase_start = df['end'].iloc[sg_count] + 3 

        else : 

            df['end'].iloc[sg_count] = df['end'].iloc[sg_count] - 6 

            cycle_lenght = df['end'].iloc[sg_count] + 3 

    for sg_count in range(0, len(input_data_sig)) : 

        df['start'].iloc[sg_count] = df['start'].iloc[sg_count]*1000 

        df['end'].iloc[sg_count] = df['end'].iloc[sg_count]*1000 

        df['phase'].iloc[sg_count] = input_data_phase[sg_count] 

    sg_count = 0 

    for elem in root: # write phases start/end points into *sig file 

        for subelem_1 in elem.findall('prog'): 

            subelem_1.set('cycletime', str(int(cycle_lenght*1000))) 

            for subelem_2 in subelem_1.findall('sgs'): 

                for subelem_3 in subelem_2.findall('sg'): 

                    for subelem_4 in subelem_3.findall('cmds'): 

                        for subelem_5 in subelem_4.findall('cmd'): 

                            if subelem_5.get('display')=='3': 

                                subelem_5.set('begin', str(int(df['start'].iloc[sg_count]))) 

                            if subelem_5.get('display')=='1': 

                                subelem_5.set('begin', str(int(df['end'].iloc[sg_count]))) 

                    sg_count = sg_count+1 

  tree.write(sig_file_path) 

    return df 

 

def ReadDataBaseVissim (database_file_path) : # function for read output data 
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    import sqlite3 # output data storage in sql database 

    con = sqlite3.connect(database_file_path) 

    cursorObj = con.cursor() 

    cursorObj.execute('SELECT * FROM VEHICLENETWORKPERFORMANCE 

MEASUREMENT_EvaluationTimeIntervalClass ') # select data from sql database 

    database_names = list(map(lambda x: x[0], cursorObj.description)) #parse names 

    rows = cursorObj.fetchall() 

    cursorObj.execute('SELECT * FROM VEHICLENETWORKPERFORMANCE 

MEASUREMENT_EvaluationTimeInterval ') # select data from sql database 

    database_names_latent = list(map(lambda x: x[0], cursorObj.description)) 

    rows_latent = cursorObj.fetchall() 

    rows [0] = rows[0] + rows_latent[0] 

    database_names = database_names + database_names_latent 

    input_row = pandas.Series(rows[0],index = database_names) 

    output_df = pandas.DataFrame (input_row).T 

    con.close()  

    return output_df 
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Appendix B 

The code of the main data collection module 

import win32com.client as com # for connection with PTV Vissim 

import pandas 

 

# files’ paths   

Model_Path = "C:\\Projects\\ComServerDataGain\\model\\4_4_Base.inpx" 

Input_Data_For_Model = "C:\\Projects\\ComServerDataGain\\input_for_stability.xlsx" 

sig_file_path = "C:\\Projects\\ComServerDataGain\\model\\4_4_base.sig" 

database_path = "C:\\Projects\\ComServerDataGain\\model\\4_4_Base.results\\1.db" 

 

# connect to Vissim via COM 

Vissim = com.gencache.EnsureDispatch("Vissim.Vissim.11") 

Vissim.LoadNet (Model_Path) 

Vissim.Graphics.CurrentNetworkWindow.SetAttValue("QuickMode",1) 

 

# read input data 

input_data_set = pandas.read_excel(Input_Data_For_Model) 

cols_with_flow = 4 

cols_with_sig_count = 10 

cols_with_share = 12 

 

from pandas import concat 

from API_Vissim import WriteToSig 

from API_Vissim import ReadDataBaseVissim 

 

for z in range(0,len(input_data_set)) : # main cycle (each row in dataset = 1 simulation) 

    link_count = 0 

    for SimRun in Vissim.Net.SimulationRuns : 

            Vissim.Net.SimulationRuns.RemoveSimulationRun(SimRun) # clear Vissim output 

    try : 

        for i in range(1, Vissim.Net.VehicleInputs.Count+1): 

            replaced_input_value = int(input_data_set[input_data_set.columns[first_flow_row_position + 

link_count]].iloc[z]) 

            try : 

                Vissim.Net.VehicleInputs.ItemByKey(i).SetAttValue('Volume(1)', replaced_input_value) # 

changing vehicle input value 

            except : 

                print ('Error in write vehicleinput') 

            link_count +=1 

    except : # Vissim reboot on failure 

        print ('Strange error') 

        Vissim.Exit 

        Vissim = com.gencache.EnsureDispatch("Vissim.Vissim.11") 

        Vissim.LoadNet (Model_Path) 

        Vissim.Graphics.CurrentNetworkWindow.SetAttValue("QuickMode",1) 

        continue 

   dff = pandas.Series(input_data_set[input_data_set.columns[cols_with_flow + 1:cols_with_flow + 

cols_with_sig_count + 1]].iloc[z]) 

    WriteToSig (sig_file_path, dff) # changing traffic light parameters 
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    link_count = link_count + cols_with_sig_count 

    for j in range(1, Vissim.Net.VehicleRoutingDecisionsStatic.Count+1): 

        for jj in range(1, Vissim.Net.VehicleRoutingDecisionsStatic.ItemByKey(j).VehRoutSta.Count+1): 

            try : # changing static routes parameters 

Vissim.Net.VehicleRoutingDecisionsStatic.ItemByKey(j).VehRoutSta.ItemByKey(jj).SetAttValue('RelFl

ow(1)', float(input_data_set[input_data_set.columns[first_flow_row_position + link_count]].iloc[z])) 

            except : 

                print ('Error in write routes') 

            link_count +=1 

    Vissim.Simulation.SetAttValue('UseMaxSimSpeed', True) 

      try :  

        Vissim.Simulation.RunContinuous() # simulation run 

    except : 

        Vissim.Exit 

        print ('Vissim reboot on simulation ' + str(z)) 

        Vissim = com.gencache.EnsureDispatch("Vissim.Vissim.11") 

        Vissim.LoadNet (Model_Path) 

        Vissim.Graphics.CurrentNetworkWindow.SetAttValue("QuickMode",1) 

        continue 

 

    output_df = ReadDataBaseVissim(database_path) # read Vissim output data 

    export_data_ser = pandas.concat([input_data_set.iloc[z],output_df.iloc[0]],axis=0, 

ignore_index=False) 

    export_data_ser = pandas.DataFrame(export_data_ser).T 

    if z == 0 : 

        export_data_frame = pandas.DataFrame(export_data_ser) 

    else : 

        export_data_frame = pandas.concat ([export_data_frame,export_data_ser],axis=0, 

ignore_index=True) 

    export_data_frame.to_excel("output.xlsx") 
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