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The application of hydrogen enrichment of palm oil-based biodiesel in a compression ignition 
engine was examined in this work. Synthesized from crude palm oil (CPO), biodiesel was first 
fed into a single-cylinder diesel engine. The intake manifold received hydrogen gas at flows of 
2.5 lpm, 5 lpm, 7.5 lpm, and 10 lpm. Operating at a constant speed of 2,000 rpm, the single-
cylinder, direct-injection diesel engine used The aim of this work is to assess the performance 
and emissions of a diesel engine utilizing hydrogen gas and CPO biodiesel fuels. This work 
examined engine performance and exhaust emissions using smoke emissions, exhaust 
temperature, power, thermal efficiency, and fuel economy. Addition of hydrogen improved 
emissions and performance. Optimal engine performance was achieved by adding 2.5 lpm of 
hydrogen, which resulted in a 20.12% increase in brake thermal efficiency (BTE) and 
a 27.57% reduction in fuel consumption compared to biodiesel. The addition of hydrogen gas 
has a positive impact on exhaust emissions (HC, CO2, and smoke opacity), but has a negative 
impact on NO emissions. At elevated loads of 2.5 lpm hydrogen flow, emissions measured 
were 40.00 ppm, 0.04%, 4.20%, and 44.20%, respectively, alongside a 45.72% increase in NO 
emissions. Including hydrogen gas improves the diesel engines running on biodiesel's 
performance and exhaust pollutants. 
Keywords: Dual fuel, CPO biodiesel, Exhaust emissions, exhaust temperature, Engine 
performance 

1. Introduction 

The potential of biodiesel has been assessed as 
an alternative to diesel oil by government 
regulation No. 12/2015, which requires a mixture 
of 30% biodiesel with diesel oil from 2020 to 2025 
[1]. Biodiesel is a renewable fuel derived from 
organic plant components, specifically palm oil 
utilized in diesel engines, either as a blend of 
diesel fuel or pure biodiesel fuel [2]–[7]. Biodiesel 
derived from crude palm oil (CPO) is widely 
recognized for its environmentally sustainable 
characteristics [8]–[10]. The oxygen content in 
biodiesel of around 9-12% provides various 
advantages, such as reducing smoke emissions, 

carbon monoxide (CO), hydrocarbons (HC), and 
exhaust gas temperatures [11]–[13]. A study by 
Bari and Hossain [14] shows that using CPO as 
fuel in diesel engines, compared to traditional 
diesel fuel, can reduce exhaust emissions of CO, 
CO2, and HC by up to 50%. One advantage of 
biodiesel is its higher cetane number compared to 
diesel fuel [12], [15]–[17]. A higher cetane number 
shortens the ignition delay time, thereby 
improving the combustion efficiency of diesel 
engines. This also allows the engine to run more 
smoothly and with less delay  [18], [19]. 
Additionally, biodiesel derived from CPO is 
considered environmentally sustainable [20]. 
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The use of biodiesel negatively affects the 
performance of diesel engines. According to Gad 
et al. [11], it has been discovered that 
incorporating biodiesel into a system can decrease 
power and average effective pressure, primarily 
because of its low calorific value. Furthermore, the 
engine has detrimental effects when biodiesel is 
used for an extended period without any 
modifications, mostly due to the elevated 
viscosity, reduced volatility, and reactive nature 
of unsaturated hydrocarbon chains [21]. In 
addition, the viscosity value also affects higher 
BSFC, longer combustion duration, BTE, HRR, 
and decreased engine peak pressure [11], [22]–
[25]. To enhance the subpar performance of diesel 
engines when utilizing biodiesel fuel, it is possible 
to ameliorate the situation by introducing minute 
quantities of hydrogen into the intake manifold. 
Hydrogen fuel has several benefits, such as its 
flammability, low density, and high calorific value 
[26]–[31]. Diesel Dual Fuel (DDF) technology 
plays a crucial role in diesel engines by enabling 
the use of two types of fuel. DDF engines are 
specially designed to operate with a combination 
of fuels, using biodiesel as the pilot fuel and 
hydrogen as the main fuel.  

Several studies have highlighted how to 
reduce emissions and how to improve diesel 
engine performance with DDF systems. Yilmaz et 
al. [32] have conducted research on a 4-cylinder 
diesel engine. The findings demonstrated that the 
incorporation of HHO leads to a notable 
enhancement in engine torque, with an average 
increase of 19.1%. Emission reductions of 13, 5, 
and 14 percent, respectively, in CO, HC, and SFC 
emission types. Boopathi et al. [26] found that a 
DDF engine running on palm oil biodiesel 
increased NOx emissions by 16.67% at low load 
when hydrogen flow rates were varied by 5 lpm 
and 10 lpm. According to studies by Karthic et al. 
[33], using biodiesel made from Madhuca 
Longifolia in dual-fuel diesel engines raises the 
temperature of the exhaust gas. This is because as 
hydrogen gas burns, it releases more energy. 
Studies by Sivabalakrishnan and colleagues [34]. 
When hydrogen and biodiesel are combined in a 
diesel engine, knocking may happen. This is 
because hydrogen has a lower ignition energy, a 
wider range of flammability, and a shorter flame 
propagation distance. Research by Nag et al. [35] 
showed that when hydrogen makes up 20% of the 

hydrogen energy share (HES), the likelihood of 
engine knocking increases significantly at 75% 
load. This is attributed to elevated cylinder 
temperatures, which create localized hot spots 
and heighten the risk of knocking. Similarly, 
Uludamar et al. [36] investigated the effects of 
combining hydrogen fuel with biodiesel on noise, 
engine vibrations, and pollutant emissions. Their 
findings revealed that the type of biodiesel used 
played a crucial role in reducing engine noise, 
vibrations, and emissions.  

Previous studies have explored the effects of 
combining biodiesel and hydrogen gas in single-
cylinder diesel engines [12], [24], [37]–[39]. These 
studies show that integrating hydrogen into the 
combustion process improves engine 
performance and reduces exhaust emissions. The 
quality of biodiesel is significantly influenced by 
the raw materials used in its production. 
Therefore, our present study investigates the 
impact of blending hydrogen gas with biodiesel 
derived from palm oil on diesel engine 
performance and combustion characteristics, 
focusing on efficiency and emissions. Despite 
Indonesia being the largest global producer of 
palm oil, research on the use of palm-based 
biodiesel in diesel engines remains limited. In 
contrast, extensive studies have been conducted 
on biodiesel-diesel blends. This research evaluates 
the performance of a single-cylinder diesel engine 
powered by CPO and hydrogen blend, aiming to 
optimize performance and reduce emissions by 
varying hydrogen input. 

  
2. Material and Methods 

The study utilized a single-cylinder diesel 
engine with a maximum power of 6.2 kW at 2000 
rpm. The electric generator serves to evaluate the 
engine's performance through the application of 
an incandescent lamp load. The power load for 
each lamp is 500 watts, while the range of power 
load utilized in this study spans from 1000 watts 
to 4000 watts. The analysis of carbon emissions 
from smoke employs a smoke meter. The 
assessment of biodiesel fuel consumption requires 
a stopwatch to measure the time taken for 25 ml of 
fuel to be exhausted. A digital flowmeter 
quantifies hydrogen gas, measuring flow rates 
from 0 to 10 liters per minute. The procedure 
entails the transfer of hydrogen gas from a 
cylinder at 150 bar to 1 bar through the regulator. 
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Hydrogen gas is mixed with air before entering 
the combustion chamber, whereas biodiesel is sent 
directly into the combustion chamber. The 
analysis of carbon emissions from smoke employs 
a smoke meter [40]. The experimental equipment 
scheme is presented in Figure 1.  This experiment 
utilized hydrogen gas and biodiesel generated 
from crude palm oil (CPO) as fuel. CPO biodiesel 
was supplied by Wilmar Nabati Indonesia 
Company, while hydrogen gas was provided by 
Samator Company. Fuel specifications are 
presented in Table 1 and Table 2, respectively. 

 

3. Results and Discussion 

This study investigates the impact of using 
CPO biodiesel (B100) combined with hydrogen 
gas on the performance and emissions of dual-fuel 

diesel engines. The analysis of combustion 
emissions includes nitrogen oxides (NO), 
hydrocarbons (HC), smoke, carbon dioxide (CO2), 
and exhaust gas temperature (EGT). Engine 
performance is evaluated based on energy output, 
thermal efficiency, and specific fuel consumption. 
 
3.1. Engine Emissions 

Engine NO emissions are shown in Figure 2a. The 
addition of hydrogen to biodiesel affects NO 
emissions increasing with increasing engine load. 
At low loads starting from 1-3 kW, NO emissions 
are still low compared to biodiesel and diesel, 
because the combustion chamber temperature has 
not increased. However, compared to single fuel, 
namely biodiesel, the increase was 24.48% at a 
load of 3 kW with a hydrogen flow of 10 lpm.

 

 
Figure 1. Schematic of testing equipment 

 
Table 1. CPO biodiesel and hydrogen fuel specifications 

No Properties CPO Biodiesel Hydrogen 

1 Density at 15 °C (Kg/m3) 875 0.085 

2 Kinematic Viscosity 40°C (mm2/s (cSt)) 4.5 0 

3 Cetane Number (Min) 56.7 5-10 

4 Flash Point (°C, Min) 140  

5 Fog Point (°C, Max) 15.4  

6 Lower Heat Value (kJ/kg) 39.910 119.810 

7 Auto Ignition Temperature (°C) >101 585 

8 Stoichiometric Air-Fuel Ratio 12.5 34.3 
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Table 2. Testing tool specifications 

Flowmeter gase H2 Gas Analyzer Smoke opacity meter 

Type MF 5712 Merk Hesbone Merk Heshbone 

Flow range 0-200 SLPM Type HG-520 Type HD-410 

Accuracy +/- (2.0+0.5FS) CO Measurement 
range 

0 – 9.99% with 
0.01% resolution 

Measurement 
range 

0 – 100% 

Repeatability +/- 0.5% HC Measurement 
range 

0 – 999 ppm with 
1 ppm resolution 

Precision +/- 1% 

Respone Time < 2 sec CO2 
Measurement 
range 

0 – 20% with 
0.01% resolution 

Power supply 110/220V 
AC 50/60 
Hz 

Max Pressure < 0.8 MPa O2 Measurement 
range 

0 – 25% with 
0.01% resolution 

- - 

Working 
Temperature 

-10 ~ 55 C Power supply 110/220/240 V 
AC 50/60 Hz 

- - 

 
Sequentially, the increase in NO emissions at 

high loads with diesel, biodiesel, BH2.5, BH5, 
BH7.5, and BH10 fuels is 75 ppm, 103 ppm, 191 
ppm, 170 ppm, 180 ppm, and 199 ppm, 
respectively. During the compression stroke, the 
engine's peak temperatures and pressures rise, 
which causes an increase in NO emissions. The 
same trend has been observed by researchers [41], 
[42]. 

Figure 2b illustrates a significant reduction in 
HC emissions with the addition of hydrogen gas. 
This occurs because the combustion temperature 
rises, leading to a faster ignition rate, more 
complete fuel combustion, and an expanded 
combustion area [43]. The modulation of the 
hydrogen gas addition flow rate can diminish 
hydrocarbon emissions in the dual fuel system 
due to the accelerated combustion velocity of 
hydrogen, resulting in reduced unburned fuel. 
Good combustion is combustion that can burn all 
the fuel that has been entered into the combustion 
chamber [44]. Moreover, the addition of hydrogen 
raises the combustion temperature, as 
demonstrated by data showing higher exhaust gas 
temperatures with increased hydrogen content. 
The lowest HC emissions occur in the variation of 
10 lpm hydrogen gas with a value of 22 ppm or a 
75% decrease from the single fuel system. 

Figure 2c depicts smoke opacity emissions 
increasing as the engine load rises. At high loads, 
the use of diesel and biodiesel fuels results in 
reduced smoke emissions due to the elevated 
combustion chamber temperature, which 
promotes more complete fuel combustion. 

However, this also leads to higher exhaust gas 
temperatures. The amount of biodiesel injected 
into the combustion chamber suggests that it does 
not burn entirely, as indicated by the increased 
smoke opacity emissions. This phenomenon can 
be attributed to the fact that biodiesel, used as a 
pilot fuel, is part of the long-chain paraffin family, 
which contributes to higher smoke opacity 
emissions [41], [42]. The maximum smoke opacity 
emission occurs on average when the load is 3.5 
kW. The dual fuel system exhibits much lower 
smoke opacity emissions in comparison to the 
single fuel system. The use of hydrogen reduces 
the amount of biodiesel fuel entering the 
combustion chamber, which in turn lowers smoke 
opacity emissions. The most significant reduction 
in smoke opacity is achieved at a hydrogen gas 
flow rate of 10 lpm, as this provides more 
hydrogen and the highest level of biodiesel 
substitution. Smoke formation occurs when fuel 
does not burn completely, which can result from 
factors such as incomplete combustion, 
insufficient oxygen, an improper air-fuel mixture 
in the combustion chamber, or low combustion 
temperatures [11].  

One advantage of using hydrogen gas as a fuel 
supplement in diesel engines is the reduction of 
CO2 emissions [45]. As seen in Figure 2d, CO2 
emissions from dual fuels exhibit a declining 
trend relative to single fuels, such as diesel and 
biodiesel. The incorporation of hydrogen 
markedly enhances biodiesel fuel testing due to 
the oxygen concentration present in biodiesel. 
According to previous research that mixed 
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biodiesel fuel in diesel engines, CO2 emissions 
decreased because hydrogen gas does not contain 
carbon molecules [46]–[48]. 

 
3.2. Exhaust Gas Temperatur (EGT) 

Figure 3 illustrates the exhaust gas temperature 
(EGT) for an engine utilizing B100 fuel with 
variable hydrogen flow rates of 2.5 lpm, 5 lpm, 7.5 
lpm, and 10 lpm. The graph depicts the correlation 
between EGT and various engine load 
fluctuations. From Figure 3, it is elucidated that an 
elevation in exhaust gas temperature occurs due 
to heightened load, this is a result of energy being 
introduced into the combustion chamber to 
generate engine power, thus amplifying the 
electrical load. Increasing the fuel quantity in the 
combustion chamber enhances the input energy, 
leading to a more significant conversion of energy 
into heat during combustion [49]. An extremely 
rich fuel mixture results in a higher volume of 
unburned fuel during combustion, causing a rise 

in exhaust gas temperature due to this unburned 
fuel.  

Incorporating hydrogen into the combustion 
process enhances the input energy. Given the  su 
perior calorific value of hydrogen relative to 
biodiesel, the exhaust gas temperature rises with 
variations in the hydrogen flow rate. The 
temperature reaches its peak at a flow rate of 10 
liters per minute under a 4000-watt load, 
achieving a temperature of 411°C. The increase in 
exhaust gas temperature is ascribed to the 
hydrogen mixture and the elevated calorific value 
of hydrogen gas as a fuel [26]. An increase in 
exhaust gas temperature affects NO emissions. 

 
3.3. Effective Engine Power 

Figure 4 Displays the effective power statistics 
of the engine utilizing B100 fuel with hydrogen 
flow variations of 2.5 lpm, 5 lpm, 7.5 lpm, and 10 
lpm. The graph illustrates the effective power in 
relation to various engine load fluctuations. The

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Emissions NO (a), HC (b), Smoke (c), CO2 (d) on engine load 
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power variation against different hydrogen flows 
is shown in Figure 4. In comparison to the 
maximal hydrogen flow in dual-fuel operation, 
the power output when using single-fuel biodiesel 
is 0.9% lower. The incorporation of hydrogen as a 
secondary fuel has led to an increase in engine 
capacity. As the flow of hydrogen gas increases, 
the engine produces more power. Another reason 
is that the higher calorific value of hydrogen gas 
the flame speed of hydrogen and the combustion 
that is enhanced by the presence of hydrogen 
molecules mixed with oxygen can produce high 
engine power [50]. The addition of a higher 
hydrogen gas flow causes the effective engine 
power to increase. The power increase for each 
fuel is 2.24 kW, 2.28 kW, 2.11  kW, 1.80 kW, 2.27 
kW for B100, BH2.5, BH5, BH7.5, and BH10, in that 
order. A higher calorific value and increased 
hydrogen flame speed improve combustion and 
engine output [51], [52]. 

 
3.4. Brake Thermal Efficiency (BTE) 

Figure 5 shows BTE data on an engine with 
B100 fuel and hydrogen flow rate variations (2.5, 
5, 7.5, and 10 lpm). The graph shows BTE against 
different engine load variations. The variation of 
diesel thermal efficiency can be seen in Figure 5. 
The introduction of hydrogen results in improved 
thermal efficiency during diesel engine operation. 
An important enhancement in thermal efficiency 
at a high load of 4kW has been noted with a 
hydrogen concentration of 10 lpm. The increase in  
thermal efficiency is 11.74%, 13.91%, 17.41%, 
17.31%, 15.25%, and 23.32% for diesel, 
Biodiesel, BH2.5, BH5, BH7.5, and BH10, 
respectively. Increased hydrogen flow rates result 
in a significant accumulation of hydrogen gas 

within the combustion chamber. The enhanced 
thermal efficiency is a result of the increased 
volume of pilot fuel injected, leading to a higher 
number of ignition and combustion points. The 
observed increase is due to the rapid combustion 
process, resulting in heat release over a short 
duration. This heat is not utilized for generating 
engine power; instead, it dissipates as heat loss to 
the walls of the combustion chamber [26]. 

 
3.5. Specific fuel consumption (SFC) 

Figure 6 presents the specific fuel consumption 
(SFC) for the engine running on B100 fuel at 
various hydrogen flow rates of 2.5 lpm, 5 lpm, 7.5 
lpm, and 10 lpm. The graph illustrates the 
relationship between SFC and different engine 
load variations. It shows a downward trend in 
SFC as the hydrogen flow rate increases. Increased 
combustion chamber temperatures and shorter 
ignition delays are two of the elements that reduce 
fuel consumption because they enable the injected 
fuel to burn more efficiently and convert into 
engine power. As a result, less fuel is needed to 
produce the same amount of power, as also 
explained in the study [50]. Single fuel diesel and 
B100, as well as dual fuel versions, demonstrate 
distinct specific fuel consumption values at a load 
of 4 kW with differing hydrogen gas flow rates. 
The recorded values are 567.74 gr/kWh, 539.02 
gr/kWh, 422.53 gr/kWh, 414.33 gr/kWh, 461.57 
gr/kWh, and 290.25 gr/kWh for flow rates of 2.5 
lpm, 5 lpm, 7.5 lpm, and 10 lpm, respectively. The 
image shows that at low loads, higher fuel 
consumption is required. The lower mixture of 
hydrogen gas and air leads to inadequate 
combustion of the biodiesel fuel, resulting in a 
reduced burning duration.   

 

  
Figure 3. Variation of EGT against engine load Figure 4. Power against engine load 
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Figure 5. Variation of engine BTE on engine load Figure 6. Specific fuel consumption on engine load 

 
Previous studies suggest that knocking can be 

influenced by the introduction of hydrogen gas, 
which increases heat release within the 
combustion chamber [12]. Additionally, hydrogen 
gas contributes to improved thermal efficiency 
and higher NO emissions due to its calorific value 
being three times that of biodiesel [38]. However, 
this study shows that at low loads, the reaction 
between hydrogen and biodiesel can reduce NO 
emissions compared to diesel fuel. 

 
4. Conclusion 

This study investigated the effect of hydrogen 
gas addition on the performance of a single-
cylinder diesel engine fueled by CPO biodiesel. As 
a result, we found that adding hydrogen gas 
significantly reduced fuel consumption and 
improved thermal efficiency compared to using 
pure biodiesel. Specifically, the addition of 
hydrogen gas at a rate of 10 lpm resulted in a 
47.61% reduction in fuel consumption and a 
67.64% increase in thermal efficiency. These 
findings highlight that even a small amount of 
hydrogen gas can substantially improve the 
performance of a diesel engine while reducing 
emissions. This study provides valuable insights 
for the mechanical engineering discipline, 
demonstrating the potential of hydrogen gas to 
improve the efficiency and sustainability of CPO 
biodiesel-fueled diesel engines. 
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