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Fuel efficiency in heavy-duty trucks in Indonesia faces significant challenges, while the current 

HDM-4 fuel consumption model has limitations in reflecting local conditions. This study 

calibrates the HDM-4 model using telematics data, engine speed modeling, aerodynamic 

simulations, and calibration factors. The novelty lies in updating parameters such as engine 

speed, vehicle frontal area, and calibration factors for engine power efficiency (Kpea) and 

rolling resistance (Kcr2) to account for tire-road interaction in Indonesian conditions. Data 

were collected from 5-axle trucks on the Tanjung Priok–Bandung toll road, analyzed using 

regression, Computational Fluid Dynamics (CFD) simulations, and non-parametric paired 

tests. Results show updated engine speed parameters (RPM_a0 = 680.11, RPM_a1 = -4.9031, 

RPM_a2 = 0.3858, RPM_a3 = -0.0028), a drag coefficient of 1.0556, and a frontal area of 8.2 m². 

Calibrating Kpea and Kcr2 (both 0.6) improved prediction accuracy, with no significant 

difference between predicted and observed data (p = 0.186). The enhanced HDM-4 model 

supports operational decisions, infrastructure planning, and sustainable transport policies, 

improving energy efficiency, reducing emissions, and boosting national logistics 

competitiveness. 

Keywords: Fuel consumption; HDM-4; Telematics; Heavy-duty trucks; Aerodynamics 

1. Introduction 

Fuel efficiency in heavy-duty trucks, 

particularly 5-axle vehicles, has become a critical 

issue due to their high contribution to greenhouse 

gas (GHG) emissions and increasing freight 

logistics costs. In Indonesia, these trucks account 

for a substantial portion of CO₂ and NOₓ 

emissions, impacting environmental and 

economic sustainability [1]. A global analysis 

shows that the combustion of 1 liter of diesel per 

100 km increase in fuel consumption adds 26.4 

g/km of CO₂ emissions [2], [3]. In Indonesia, fuel 

consumption accounts for up to 49.3% of Vehicle 

Operational Costs (VOC) in South Sumatra and 

32% in Jakarta and West Java [4], [5]. As the freight 

sector increasingly relies on road transport, 

improving fuel efficiency is both an 

environmental and economic necessity. 

Various methods have been developed to 

improve fuel efficiency, and one of the most 

notable is the Highway Development and 

Management (HDM-4) model. Created by the 

World Bank, this model helps predict fuel 

consumption and assess how road infrastructure 

affects vehicle efficiency [6], [7]. Countries like the 

United States, the United Kingdom, and South 

Korea have successfully used HDM-4 to support 

eco-routing and eco-driving strategies, which 

have proven effective in reducing greenhouse gas 

emissions [8], [9]. Furthermore, research has 

shown that average operating speed plays a key 

role in determining the fuel efficiency of heavy 
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trucks. This insight can serve as a foundation for 

developing more sustainable transportation 

strategies [8], [10], [11], [12]. 

Implementing HDM-4 in Indonesia comes 

with significant challenges due to differences in 

vehicle specifications, road conditions, and 

varying truck loads [8], [13]. Research has shown 

that calibrating key parameters like engine power, 

rolling resistance, frontal area, and engine speed 

can greatly improve the accuracy of fuel 

consumption predictions [14]. Several studies 

have explored HDM-4 calibration in different 

countries to enhance model accuracy. For 

example, in Michigan, when calibrating fuel 

consumption models for sedans, SUVs, light 

trucks, and heavy trucks, researchers considered 

factors like engine power, rolling resistance, 

frontal area, engine speed, weather, and road 

conditions. Studies have shown that fine-tuning 

these key parameters can greatly enhance the 

accuracy of fuel consumption predictions [14]. In 

Florida, similar calibrations were conducted for 

passenger cars and trailer trucks [15], while in 

South Korea, the focus was on passenger cars [16]. 

Meanwhile, in the UK, researchers verified the 

HDM-4 model for various types of trucks, also 

considering engine power, rolling resistance, and 

frontal area [17]. Therefore, more tailored 

calibrations are needed to ensure the model 

accurately represents the operational conditions 

of trucks in Indonesia. 

A telematics-based approach offers a practical 

way to tackle these challenges. With telematics 

technology, we can gather real-time data on 

essential factors like operational speed, vehicle 

weight, and fuel consumption [18], [19], [20]. 

Studies show that calibrating HDM-4 fuel 

consumption models using telematics data works 

well for trucks with lighter loads, though 

improvements are needed for heavy-load trucks 

[17]. Moreover, accurately simulating 

aerodynamic drag is crucial for improving model 

accuracy, especially for trucks that travel through 

routes with challenging terrain [21], [22]. With this 

in mind, our study focuses on refining the HDM-

4 Level II model by incorporating engine rotation 

parameters, aerodynamic resistance, calibration 

factors, and real-world operational conditions, 

such as speed, load weight, and road gradient. 

Specifically, we aim to develop a model that 

reflects the realities faced by 5-axle Euro-4 semi-

trailer trucks operating in Indonesia, ensuring the 

results are relevant and applicable to local 

conditions. 

This study enhances the HDM-4 Level II fuel 

consumption model to more accurately represent 

the real-world efficiency of 5-axle Euro-4 semi-

trailer trucks in Indonesia [23]. By refining key 

calibration factors including engine rotation, 

aerodynamic resistance, frontal area, engine 

power efficiency, speed, load weight, and road 

gradient. The model is better aligned with actual 

trucking operations. These improvements 

enhance accuracy and practical relevance, 

making it a valuable tool for optimizing fuel 

consumption in Indonesia’s trucking industry. 

The research focuses on the Tanjung Priok Port–

Bandung route, one of the busiest logistics 

corridors in Indonesia [24]. This route includes 

toll roads with gradients of up to 6%, in line with 

the standards set by the Directorate General of 

Highways [25]. The trucks in this study use 

Pertamina’s Bio Solar fuel for Euro-4 engines, 

ensuring a realistic setting for fuel consumption 

analysis. By combining real-time telematics data 

with aerodynamic simulations, this study aims to 

create a more accurate fuel consumption model. 

The end goal is to improve fuel efficiency, reduce 

greenhouse gas emissions, cut operational costs, 

and support more sustainable freight 

transportation in Indonesia. 

A key breakthrough of this study is the 

empirical calibration of Kcr2 and Kpea parameters 

using real toll road data, something that has not 

been done before. Furthermore, the study 

uncovers a clear relationship between engine 

speed (RPM) and fuel consumption, offering 

critical insights for optimizing HDM-4’s 

operational parameters. It also revises 

aerodynamic parameters, including the drag 

coefficient (Cd) and frontal area (AF), to more 

accurately represent the actual conditions of 

heavy-duty trucks in Indonesia. With these 

improvements, HDM-4 now delivers more 

accurate fuel consumption predictions, 

particularly by factoring in aerodynamic 

resistance. These refinements make the model 

more applicable and valuable for transportation 

planning, fleet management, and logistics 

operations in Indonesia. 
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2. Method 

This study employs an integrated approach 

that leverages telematics data, engine speed 

parameter modeling, aerodynamic analysis, and 

the calibration of the Highway Development and 

Management Model (HDM-4) to analyze the fuel 

consumption of heavy-duty trucks in Indonesia. 

This systematic approach aims to produce 

accurate and replicable fuel consumption 

predictions. The research process begins with a 

preparation phase, which involves defining the 

research focus, identifying data collection routes, 

and coordinating with trucking companies to 

ensure smooth data collection [23], [26]. Following 

this, a literature review and methodology 

planning are conducted to understand fuel 

consumption models, the use of telematics data, 

and HDM-4 calibration techniques. 

The data collection for this study incorporates 

both primary and secondary sources. Primary 

data include measurements of vehicle dimensions 

and wheel diameter, which were obtained using 

manual tools. The vehicle selected for this study is 

a 2022 Hino 5-axle truck, specifically a 2-axle head 

truck paired with a 3-axle semi-trailer. According 

to the Indonesian Trucking Association 

(APTRINDO), this configuration is the most 

common for heavy-duty trucks in Indonesia. 

Previous studies have highlighted that rolling 

resistance can vary significantly between vehicles, 

influenced by factors such as tire specifications, 

load distribution, and road conditions [27]. To 

enhance the model’s accuracy, empirical 

calibration factors have been incorporated, 

including commonly used tire specifications, 

varying load conditions, and diverse road 

characteristics. While differences between 

individual trucks are inevitable, the methodology 

applied in this study ensures that the model 

accurately represents real-world trucking 

operations, offering a more precise reflection of 

actual conditions. Secondary data were collected 

alongside engine and vehicle speed data from the 

On-Board Diagnostics (OBD-II) system [28], [29], 

including actual fuel consumption, vehicle speed, 

position, and gross vehicle weight (GVW). While 

previous studies, have noted that CAN-bus 

vehicle weight data can often be unreliable, we 

took specific steps to ensure data accuracy. To 

address potential inaccuracies, GVW readings 

were validated against weighbridge records at the 

port, and necessary adjustments were made [30]. 

Furthermore, in 2022, Hino Motors re-certified 

their CAN-bus system, eliminating the need for 

calibration modifications and improving 

measurement reliability. As the vehicles in this 

study are 2022 Hino models, the collected data 

benefits from the latest, more accurate monitoring 

system. These efforts ensure that the CAN-bus 

data used in this study is reliable and accurately 

reflects real-world vehicle operations [31]. 

The data were gathered over a one-month 

period along the Tanjung Priok to Bandung route, 

a critical corridor for container semi-trailer truck 

operations in Indonesia. Road geometry and 

gradient data from Google Earth remote sensing 

provided sufficient accuracy for transportation 

analysis, with an MAE of 1.32 meters and an 

RMSE of 2.27 meters [32]. Other secondary data 

were sourced from government agencies such as 

the Ministry of Public Works and Housing and the 

Central Statistics Agency. These datasets provide 

information on International Roughness Index 

(IRI), and road surface texture depth [26], [28].  

Using telematics data offers significant 

advantages because passive data collection 

methods provide high spatial and temporal 

resolution at a low cost [28]. Devices such as 

Photochemical Assessment Monitoring Stations 

(PAMS), Global Positioning Systems (GPS), and 

cellular networks facilitate real-time vehicle 

activity monitoring. Modern trucks equipped 

with sensors record operational parameters like 

fuel consumption, vehicle speed, and throttle 

position, which are then transmitted via the 

Electronic Control Unit (ECU) for analysis. 

Although manufacturer-provided telematics 

systems are not explicitly designed for HDM-4 

calibration, the data they generate are reliable and 

reflect real-world driving conditions [17], [29]. 

The calibration is conducted at the whole-trip 

level to capture real-world operational variations, 

including travel distance, average speed, vehicle 

weight, and road gradient. To ensure balanced 

data representation, the data is split into 70% for 

calibration and 30% for validation using stratified 

random sampling. The model’s accuracy is 

assessed using R2, RMSE, and MAPE to evaluate 

its ability to explain the data, measure prediction 

errors, and assess percentage discrepancies. 

Outliers that reflect actual operational conditions 

are kept to ensure the model’s relevance. This 
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method ensures that the model is both accurate 

and applicable to real-world scenarios [33], [34]. 

The next step involves calibrating vehicle 

parameters by modeling the relationship between 

engine speed and vehicle speed. This relationship 

is critical because higher vehicle speeds require 

higher engine speeds, which directly impacts fuel 

efficiency [35]. To make the HDM-4 model more 

relevant to modern vehicle technology, calibration 

is essential, as the model’s default values are 

based on older engine designs [14]. This process 

starts with gathering telematics data on vehicle 

speed and RPM, followed by filtering to remove 

any anomalies. Then, a third-degree polynomial 

regression is applied to capture the non-linear 

relationship between these two variables, as 

outlined in Eq. (7). The resulting calibrated 

parameters replace the default HDM-4 values, 

ensuring the model aligns better with modern 

engines, which feature common-rail fuel injection 

systems and advanced emission controls. To 

confirm the accuracy of the model, the coefficient 

of determination (R²) is used, ensuring the model 

captures the true dynamics of speed and RPM, 

ultimately improving fuel consumption 

predictions. 

Following this, aerodynamic analysis is 

conducted using Computational Fluid Dynamics 

(CFD) in SolidWorks Flow Simulation [36], [37]. 

This software applies the k-ε turbulence model, 

which is suitable for steady-state flow simulations 

but has limitations in capturing complex turbulent 

dynamics such as wake formation and vortex 

shedding. Since the focus of this research is on the 

macroscopic calibration of aerodynamic 

parameters in the HDM-4 model, this approach is 

considered sufficient [38], [39]. The process 

includes three main stages: pre-processing, 

processing, and post-processing. During pre-

processing, a vehicle model based on actual 

dimensions is created, validated, and meshed. 

Boundry conditions such as flow type, gravity, 

fluid type, and test speed are defined. In the 

processing stage, numerical simulations are run to 

calculate frontal area (AF) and the drag coefficient 

(Cd). The calculation follows Eq. (1). In the post-

processing stage, simulation results are 

interpreted to evaluate the vehicle’s aerodynamic 

efficiency, where a lower drag coefficient 

indicates a more streamlined and fuel-efficient 

design [40], [41], [42]. 

𝐶𝑑 =
2 𝐹𝐴 

𝜌 𝑉2 𝐴𝐹
 (1) 

where Cd represents the drag coefficient 

(dimensionless), FA is the aerodynamic drag force 

(N), 𝜌 denotes the air density (kg/m³), V 

corresponds to the relative velocity between the 

vehicle and air (m/s), and AF is the frontal area of 

the vehicle (m²). Once the calculation is 

completed, the post-processing stage is conducted 

to interpret the simulation results and evaluate the 

vehicle’s aerodynamic efficiency. Consequently, 

the lower the Cd value, the more aerodynamic 

and fuel-efficient the vehicle design becomes [40], 

[41], [42].  

In addition to the aerodynamic analysis, 

HDM-4 model calibration is performed by 

considering various factors such as vehicle 

weight, speed, and road gradient [26]. The fuel 

consumption estimation process begins by 

determining the total resistance force acting on the 

vehicle, which is calculated using Eq. (2). 

 

FTR = FA + FG + FR + FCV (2) 

where FA represents the aerodynamic drag force 

(N), FG is the gradient resistance force (N), FR is 

the rolling resistance force (N), and FCV refers to 

the curvature resistance force (N). After 

calculating the total resistance force, the traction 

power required to overcome this resistance is 

determined using Eq. (3).  

 

PTR =
FTR × V

1000
 (3) 

where PTR denotes the traction power (kW) and 

V is the vehicle speed (m/s). Once the traction 

power is obtained, the total engine power is 

calculated using Eq. (4).  

 

PTOT = (
PTR

EDT
+ PENGACCS) (4) 

where PTOT represents the total engine power 

(kW), EDT corresponds to the drivetrain 

efficiency, and PENGACCS is the power required 

for engine accessories (kW). The total engine 

power is a crucial factor in determining the 

vehicle’s fuel consumption under different 

operational conditions. Following this, the 

instantaneous fuel consumption is estimated 

using Eq. (5). 
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IFC  = max [ID_FUEL, ZETA × PTOT × (1 + dFUEL)] (5) 

 

where IFC represents the instantaneous fuel 

consumption (ml/s), ID_FUEL is the fuel 

consumption at idle, ZETA refers to the engine 

efficiency, and dFUEL is an additional fuel 

consumption factor due to speed variations. After 

determining the instantaneous fuel consumption, 

the specific fuel consumption is calculated using 

Eq. (6).  

FC =
𝐼𝐹𝐶

𝑉
 (6) 

where FC refers to the specific fuel consumption 

(ml/km) and IFC is the instantaneous fuel 

consumption (ml/s). This calculation ensures that 

the model accurately reflects real-world fuel 

consumption behavior. To ensure that the fuel 

consumption predictions align with actual 

operational conditions, calibration is applied to 

several engine parameters. One of these 

parameters is the engine speed (RPM), which is 

determined using Eq. (7).  

As shown in Eq. (7) RPM_a0, RPM_a1, 

RPM_a2, and RPM_a3 are engine speed model 

parameters obtained through calibration. Engine 

speed is a key variable affecting fuel consumption, 

as it influences both power output and mechanical 

efficiency.  

Rolling resistance is a critical factor affecting 

vehicle fuel consumption, particularly for heavy-

duty trucks operating on diverse road surfaces. To 

account for this, the rolling resistance factor is 

determined using Eq. (8). 

As shown in Eq. (8) Kcr2 represents the rolling 

resistance factor, TD denotes the road texture 

depth (mm), and RI refers to the average road 

roughness value (m/km), while CR_CR2_a0, 

CR_CR2_a1, CR_CR2_a2 are rolling resistance 

coefficients calibrated based on field data. Rolling 

resistance plays a significant role in fuel efficiency, 

especially for heavy-duty vehicles operating 

under varying road conditions. Furthermore, the 

engine power factor is adjusted using Eq. (9).  

As shown in Eq. (9), Kpea is the calibration 

factor, PRAT is the maximum engine power (kW), 

RPM_IDLE is the engine speed at idle (rev/min), 

RPM100 is the engine speed at 100 km/h 

(rev/min), RPM is the engine speed at operational 

speed (rev/min), PACCS_a0 is the ratio of engine 

and accessory resistance to the engine power at 

100 km/h, and PACCS_a1 is a model parameter. 

The comparison between the calibrated HDM-4 

model predictions and the observed fuel 

consumption data is analyzed using the Wilcoxon 

Signed-Ranks Test. This non-parametric method is 

ideal for paired samples that do not meet normality 

assumptions [43]. The null hypothesis (H₀) states 

that the median difference is zero, while the 

alternative hypothesis (H₁) suggests a significant 

difference. The Z value is compared to the critical Z 

value of ±1.96 at a 0.05 significance level. The 

results are reported by comparing the number of 

negative ranks, positive ranks, and ties as 

indicators of the model’s stability. In refining the 

model, we used an empirical trial and error 

calibration approach, where we adjusted Kcr2 

(rolling resistance factor) and Kpea (engine 

efficiency factor) along with aerodynamic factors 

(Cd and AF). These adjustments ensured that the 

model effectively reflects real-world operational 

scenarios, enhancing its ability to predict fuel 

consumption with greater accuracy. The calibration 

was conducted in three scenarios: (1) scenario 1: 

Using the default HDM-4 parameters without 

adjustments, which showed a significant difference 

between predicted and actual fuel consumption, (2) 

scenario 2: Involving aerodynamic calibration with 

adjustments to the drag coefficient (Cd) and frontal 

area (AF), as well as engine RPM adjustments, and 

(3) scenario 3: Adding the calibration factors Kcr2 

and Kpea through a trial and error process. With 

adjustments in all three scenarios, the model now 

represents real-world fuel consumption more 

accurately, with Scenario 3 providing the closest 

results. 

RPM = RPM_a0 +  RPM_a1 x V +  RPM_a2 x V2 +  RPM_a3 x V3 (7) 

CR2 = Kcr2 × (CR_CR2_a0+CR_CR2_a1×TD+CR_CR2_a2×RI) (8) 

PENGACCS = Kpea × PRAT × [PACCS−a1 +
(PACS−a0 − PACCS−a1)(RPM − RPM −IDLE)

(RPM100 − RPM −IDLE)
]
 (9) 
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3. Result and Discussion 

The calibration was done at the whole-trip 

level instead of shorter road segments, as each 

data entry reflects key operational parameters 

such as travel distance, average speed, vehicle 

weight, and road gradient, with 94 trips included. 

To prevent ill-conditioning issues, we ensured 

that our dataset covered a wide range of 

operational conditions, including vehicle weights 

from 15.27 to 38.16 tons, operating speeds from 5.1 

to 52.3 km/h, and road gradients between +4.9% 

and -6.7%. This diversity in input parameters 

means that the model is not restricted to a single 

type of trip but can adapt to various real-world 

scenarios, maintaining a high level of accuracy 

without being biased by overly similar data. The 

results showed strong predictive ability, with R² 

values of 0.83 for the training set and 0.79 for the 

test set. RMSE values of 0.39 km/l for the training 

set and 0.43 km/l for the test set, alongside a 

MAPE of 9.5%, confirm that the model remains 

reliable even with new data. Additionally, an 

outlier analysis using the Interquartile Range 

(IQR) method was performed, retaining extreme 

values as they accurately represent real-world 

operational conditions. 

 

3.1. Calibration of Engine Speed Model 

Parameters 

These differences can be attributed to 

advancements in engine technology, particularly 

in modern engines equipped with common-rail 

injection systems and advanced emission controls, 

which enable lower engine RPMs at the same 

speeds due to improved torque and fuel 

efficiency. Since the HDM-4 model was developed 

based on older engine characteristics, it tends to 

overestimate RPM at lower speeds and 

underestimate it at higher speeds. Although the 

Zaabar & Chatti model offers a more recent 

perspective, it still exhibits a sharp increase in 

RPM at higher speeds, which does not fully reflect 

the real-world conditions observed in Indonesia 

[14]. 

These differences reflect advancements in 

engine technology and how they impact truck 

performance and fuel consumption. The default 

engine RPM parameters in the HDM-4 model are 

RPM_a0 = 1900, RPM_a1 = -10.178, RPM_a2 = 

0.1521, and RPM_a3 = 0.00004 [6]. These values 

represent the characteristics of conventional truck 

engines used during that period. As a result, the 

HDM-4 model tends to overestimate engine RPM 

at low to medium speeds, leading to higher 

predicted fuel consumption than what actually 

occurs. On the other hand, at higher speeds, the 

HDM-4 model underestimates engine RPM and 

does not fully account for the increased 

aerodynamic resistance and higher power 

demands. In comparison, the study by Zaabar & 

Chatti model presents more modern engine RPM 

parameters with values of RPM_a0 = 833.7, 

RPM_a1 = -17.717, RPM_a2 = 0.9671, and RPM_a3 

= -0.0055. These parameters reflect improvements 

in combustion efficiency, fuel injection precision, 

and emission control. Although this model offers 

a more accurate prediction than HDM-4, it still 

falls short, especially at high speeds where the 

predicted engine RPM increases more sharply 

than observed in real-world conditions. This 

indicates that although the models used are based 

on more advanced technology, they still do not 

fully reflect the operational conditions of trucks in 

Indonesia. In line with previous research, 

differences in vehicle characteristics including 

rolling resistance and engine response are 

influenced by drivetrain configuration, control 

strategies, and local topography [27]. In this study, 

the 5-axle truck with a manual transmission 

showed that driving patterns, such as the use of 

engine braking on downhill slopes, significantly 

affect RPM behavior. Therefore, calibration based 

on local and up-to-date data is essential to 

improve the model’s accuracy. 

The current study provides parameters that are 

more tailored to the real-world conditions of 

Indonesian trucks. The parameters derived are 

RPM_a0 = 680.11, RPM_a1 = -4.9031, RPM_a2 = 

0.3858, and RPM_a3 = -0.0028. These values align 

with Euro-4 engine technology, which 

incorporates common-rail injection systems and 

modern emission controls [44], [45]. This 

technology allows trucks to produce optimal 

power at lower RPMs, improving fuel efficiency 

and reducing emissions. These results highlight 

the efficiency of Euro-4 engines in maintaining 

stable RPMs across different speeds compared to 

older engine technologies. To better understand 

the relationship between speed and engine RPM, 

this study used a third-degree polynomial model. 

The equation derived from the data is: y = -0.0028 

x3 + 0.3858 x2 - 4.9031 x + 680.11. With a coefficient 
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of determination  R2 = 0.9838 . This high R2 value 

indicates that the model fits the observed data 

very well. The model developed in this study 

captures the gradual increase in RPM as vehicle 

speed rises, providing a more accurate 

representation of fuel consumption trends 

compared to the HDM-4 and Zaabar & Chatti 

models. By recalibrating key parameters, the 

model aligns with modern truck engine 

technology, incorporating common-rail injection 

and advanced emission controls. These 

refinements enhance the accuracy of fuel 

consumption predictions while supporting efforts 

to optimize vehicle performance and reduce 

emissions. 

The differences between the HDM-4 model, 

the Zaabar & Chatti model, and actual 

observations are clearly illustrated in Figure 1 and 

supported by Table 1. The blue dots represent 

observed telematics data, which show a gradual 

and consistent increase in engine RPM as vehicle 

speed rises. In contrast, the orange dots from the 

HDM-4 model tend to overestimate RPM at lower 

speeds and underestimate it at higher speeds. 

Meanwhile, the green dots from the Zaabar & 

Chatti model show a much sharper increase in 

RPM at higher speeds, diverging from actual 

operating conditions. The red dashed line derived 

from a third-degree polynomial regression 

developed in this study closely follows the 

observed trend, offering a more accurate 

reflection of modern engine performance. The 

curve shown in the graph represents the average 

engine RPM in relation to vehicle speed, 

calculated from full-trip telematics data. Average 

RPM values were obtained by aggregating all 

RPM data points and pairing them with the 

corresponding average speed for each trip. This 

approach provides a representative picture of 

typical vehicle operations. Furthermore, the 

average RPM values were validated against 

predictions from the HDM-4 model and prior 

studies, with the resulting polynomial regression 

achieving a coefficient of determination (R2) of 

0.9838. This indicates the model captures nearly 

all variation in the observed data. Despite inherent  

 

 
Figure 1. Calibration of engine speed model parameters 

 
Table 1. Comparison of engine speed model parameters for heavy-duty trucks 

Model RPM_a0 RPM_a1 RPM_a2 RPM_a3 

HDM-4 1900.0 -10.178 0.1521 0,00004 

Zaabar & Chatti 833.7 -17.717 0.9671 -0.0055 

Current Study 680.11 -4.9031 0.3858 -0.0028 
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fluctuations in engine speed due to shifting 

patterns and terrain, using averaged values 

proves to be a reliable method for modeling RPM 

and forms a solid basis for further analysis. 

 

3.2. Calibration of Aerodynamic Parameters 

The aerodynamic simulation results for heavy-

duty vehicles offer a clear picture of how air flows 

around the vehicle, the drag force, and the drag 

coefficient. The airflow distribution, shown 

through streamlines with color gradients, reveals 

that air moves smoothly over the cabin and body 

of the vehicle. However, as the vehicle speed 

increases, significant turbulence forms behind the 

vehicle, known as the wake region. This 

turbulence creates a low-pressure zone, which in 

turn increases drag force [46]. From the 

simulation, the average drag force recorded is 

1,455.792 N, with a minimum of 1,455.556 N and a 

maximum of 1,455.851 N. These values highlight 

that air resistance on heavy-duty vehicles is quite 

substantial, especially at higher speeds [46]. The 

simulation also indicates a drag coefficient (Cd) of 

1.0556, with a range between 1.0551 and 1.0558, 

and a frontal area (AF) of 8.2 m². In contrast, the 

default values used in the HDM-4 model assume 

a drag coefficient (Cd) of 0.80 and a frontal area 

(FA) of 9.0 m² [26]. 

The differences between the simulation results 

and the HDM-4 defaults can be explained by the 

turbulence created in the wake region, which 

leads to increased pressure drag. This means the 

engine needs to work harder to maintain speed. 

Additionally, the turbulence behind the vehicle 

raises drag force and fuel consumption. Although 

the drag coefficient from the simulation is higher 

than the default HDM-4 value, aerodynamic drag 

still plays a major role in fuel efficiency, 

particularly because air resistance increases 

exponentially with speed [46]. 

These findings align with earlier research, 

which shows that aerodynamic drag significantly 

affects the performance of heavy-duty vehicles, 

especially at high speeds [26]. Therefore, this 

simulation underscores the importance of 

calibrating the HDM-4 model to match the real 

aerodynamic conditions of modern heavy-duty 

vehicles. Such calibration is crucial to improve the 

accuracy of fuel consumption predictions, ensuring 

they reflect current vehicle technology and real-

world operations [14], [17]. Given these significant 

differences between the simulation results and the 

default HDM-4 values, it is clear that modern 

vehicle designs have evolved aerodynamically. 

Therefore, adjusting parameters such as the drag 

coefficient (Cd) and frontal area (AF) is essential to 

improve the accuracy of fuel consumption 

predictions. As presented in Table 2, the differences 

between the default HDM-4 values and the 

calibrated model emphasize the significant role of 

aerodynamic resistance in influencing vehicle 

efficiency. The aerodynamic simulation shown in 

Figure 2 illustrates the formation of intense wake 

turbulence behind the container, with airflow 

speeds reaching 31.324 m/s and a pressure drop to 

67,568.17 Pa indicating flow separation behind the 

vehicle body. This turbulence generates a low-

pressure zone at the rear, increasing aerodynamic 

drag, reducing energy efficiency, and ultimately 

raising fuel consumption [46], [47]. Although this 

wake effect is not visually prominent in Figure 2, 

the airflow behavior is consistent with previous 

studies on heavy-duty vehicles. Since this research 

primarily focuses on estimating Cd and AF for 

HDM-4 calibration purposes, detailed turbulence 

visualization falls outside the study’s scope. 

However, future research is encouraged to apply 

advanced CFD tools for a more comprehensive 

analysis of wake dynamics. 

 

3.3. Calibration of the HDM-4 Model   

This analysis explores fuel consumption 

predictions using the HDM-4 model, comparing 

three different approaches. In Scenario 1, the model 

relies on default HDM-4 values without any 

adjustments. Moving to Scenario 2, the approach 

incorporates aerodynamic calibration by setting the 

drag coefficient (Cd) to 1.05 and the frontal area 

(AF) to 8.2 m², along with adjustments to the engine 

rotation model. In Scenario 3, the addition of 

correction factors Kpea and Kcr2 using a trial-and-

error approach significantly improved the accuracy 

of fuel consumption predictions, resulting in 

differences that were no longer statistically 

significant compared to actual observations.  
 

Table 2. Comparison of aerodynamic parameters for 

heavy-duty trucks 

Model 
Drag 

Coefficient (Cd) 

Frontal Area 

(AF) [m²] 

HDM-4 0.8 9.0 

Current Study 1.05 8.2 
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Figure 2. Aerodynamic simulation results 

 

In Scenario 1, the results show that 85 out of 91 

cases fall into the negative ranks category, with an 

average rank of 48.51 and a total rank of 4,123.00. 

In contrast, only 6 cases fall into the positive ranks 

category, with an average rank of 10.50. The 

Wilcoxon test produces a Z-value of -8.035 and a 

significance level of p < 0.001, clearly indicating a 

significant gap between the model predictions 

and real-world observations [26]. This suggests 

that the default HDM-4 values underestimate fuel 

consumption, likely because they do not consider 

the vehicle’s aerodynamic properties or the 

unique operational conditions on the ground. In 

Scenario 2, after calibrating the aerodynamic 

parameters and adjusting the engine rotation 

model, prediction accuracy improves. The 

number of negative ranks drops to 79 cases, with 

an average rank of 50.53, while the positive ranks 

increase to 12 cases, with an average rank of 16.21. 

Despite this improvement, the Wilcoxon test still 

yields a Z-value of -7.514 and p < 0.001, indicating 

that the differences between predicted and 

observed data remain significant. In Scenario 3, 

introducing the correction factors Kpea and Kcr2, 

both set at 0.6, further enhances prediction 

accuracy. The negative ranks drop significantly to 

50 cases, with an average rank of 48.55, while the 

positive ranks rise to 41 cases, averaging 42.89. 

The Wilcoxon test returns a Z-value of -1.324 and 

a significance level of p = 0.186, indicating that the 

difference between the predictions and the 

observed data is no longer statistically significant. 

A summary of the calibration parameters and 

statistical results is presented in Table 3. 

These results align with earlier research 

comparing HDM-4 fuel consumption predictions 

with telematics data from the UK. Significant 

discrepancies in fuel consumption estimates for 

heavy-duty trucks under the Base Case were 

found, although updates to vehicle weight and 

frontal area in the Update Case improved 

predictions. However, notable differences still 

persisted [17]. Overall, this study reinforces that 

default HDM-4 values often fall short in 

predicting fuel consumption for heavy-duty 

trucks because they do not reflect real-world 

operational weight and aerodynamic factors [23], 

[48]. While calibrating these parameters in 

Scenario 2 enhances prediction accuracy, it does 

not fully resolve the discrepancies. However, the 

adjustments introduced in Scenario 3 

substantially minimized the discrepancies, as 

indicated by the statistically insignificant 

outcome. 

 
Table 3. Calibration of HDM-4 fuel consumption model parameters for heavy-duty trucks 

Scenario Drag Coefficient (Cd) Frontal Area (AF) [m²] Kcr2 Kpea p-value 

1 0.8 9.0 Default = 1 Default = 1 < 0.001 

2 1.05 8.2 Default = 1 Default = 1 < 0.001 

3 1.05 8.2 0.6 0.6 0.186 
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Despite these improvements, some 

discrepancies remain even after updating vehicle 

weight and frontal area. These differences are 

likely due to recent technological advancements 

in heavy-duty truck design and performance [21], 

[49]. Therefore, further calibrations of the HDM-4 

model at Level III are essential to accurately reflect 

the operational conditions of today’s heavy-duty 

trucks [23]. 

 

4. Conclusion 

This study aimed to enhance the accuracy of 

fuel consumption predictions for heavy-duty 

trucks by calibrating the HDM-4 model to better 

reflect modern engine technology and real-world 

operating conditions in Indonesia. The results 

clearly show that the default HDM-4 parameters 

no longer match the characteristics of today’s 

trucks. Therefore, it is crucial to update these 

parameters by considering current engine 

technology and local operational factors. Firstly, 

calibrating the engine speed model revealed that 

the default HDM-4 parameters tend to 

overestimate fuel consumption at low to medium 

speeds, while underestimating it at higher speeds. 

The new parameters derived for Euro-4 engines 

capture the efficiency of modern engines, which 

deliver optimal power at lower RPMs, leading to 

more accurate fuel consumption predictions. 

Secondly, the calibration of aerodynamic 

parameters found that the default drag coefficient 

(Cd) and frontal area (AF) values in HDM-4 do not 

reflect real-world truck configurations. The 

simulation results thus provide a better 

representation of actual aerodynamic 

performance. In addition, calibrating the rolling 

resistance and engine efficiency factors further 

improved the model’s accuracy across various 

road conditions and vehicle loads.  

Moreover, calibrating the HDM-4 model 

through three different scenarios showed a steady 

improvement in prediction accuracy. In Scenario 

1, the default HDM-4 parameters significantly 

underestimated fuel consumption. In Scenario 2, 

incorporating aerodynamic calibration and engine 

RPM adjustments improved accuracy, though 

some differences remained. Finally, in Scenario 3, 

adding technical correction factors (Kpea and 

Kcr2) resulted in predictions that closely matched 

real-world data, with no significant statistical 

difference. The most significant finding of this 

study is that Scenario 3 incorporating 

aerodynamic calibration and technical correction 

factors yielded fuel consumption predictions that 

were statistically consistent with observed values 

(p = 0.186), confirming the robustness and 

reliability of the calibrated HDM-4 model. By 

delivering updated HDM-4 parameters tailored to 

Euro-4 trucks and incorporating modern 

aerodynamic profiles, this study provides 

practical contributions to support data-driven 

decisions in logistics efficiency, cost management, 

and emission control. As a result, heavy-duty 

truck operations in Indonesia can become more 

efficient, economical, and environmentally 

sustainable. 

Looking forward, future research should 

incorporate additional influencing factors such as 

detailed road surface conditions, short-gradient 

variability, ambient temperature, and driver 

behavior, which were beyond the scope of this 

study. Furthermore, as vehicle technology 

advances, continuous calibration using HDM-4 

Level III will be necessary to preserve model 

accuracy over time. To enhance the quality of 

aerodynamic analysis, advanced Computational 

Fluid Dynamics (CFD) simulations using high-

performance computing can deliver high-

resolution insights into airflow separation, wake 

turbulence, and drag dynamics. Additionally, 

wind tunnel testing is recommended to validate 

CFD outputs and further refine aerodynamic 

coefficients. By adopting these approaches, future 

studies can develop a more robust, flexible, and 

adaptive HDM-4-based fuel consumption model, 

aligned with the latest truck technologies and 

diverse real-world operating environments. 
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