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Waste collection and transportation are essential elements of effective waste management. 

However, despite their importance, previous studies have highlighted several challenges, such 

as routing inefficiencies and environmental concerns. This study seeks to develop an 

optimized approach for waste collection and transportation under conditions of demand 

uncertainty, capacity limitations, and traffic constraints, through the application of a 

simheuristics-based method. The methodology utilizes a simheuristics approach, integrating 

a Genetic Algorithm (GA) to determine optimal routing solutions, while employing Discrete 

Event Simulation (DES) to incorporate key economic, environmental, and social variables. 

Data were obtained from field experiments and Google Maps, and assumptions regarding 

capacity requirements, distances and collection points, transportation cost components, and 

road conditions were established to ensure the reliability of the simulation results. The 

application of the simheuristics approach effectively reduces total transportation costs by 

approximately 51%, while also significantly minimizing environmental impacts. This research 

contributes to the academic literature by presenting an innovative method that strengthens 

existing waste collection strategies with an emphasis on sustainability. Additionally, it offers 

valuable insights for waste management policy, enabling the optimization of waste collection 

without exceeding capacity limits. 
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1. Introduction 

The rapid and continuous growth of urban 

populations has significantly contributed to the 

escalating problem of municipal solid waste 

generation [1], [2], [3], [4],[5]. Municipal solid waste 

is characterized as a complex and multifaceted 

waste stream generated primarily from two 

societal sectors: the household and residential 

sector, which contributes approximately 55–65% of 

the total volume, and the commercial or industrial 

sector, which accounts for around 35–45% [6], [7]. 

In recent decades, the environmental impacts 

associated with municipal solid waste have 

garnered increasing global attention [8]. Moreover, 

solid waste is a critical issue in the context of 

sustainable development, as it is closely linked to 

the three pillars of sustainability: economic, 

environmental, and social dimensions [6].  

The challenge of achieving sustainable solid 

waste management has become a global concern. 

If not addressed effectively, it can pose serious 

risks to both public health and the environment 

[2]. To improving sustainability in solid waste 

management requires effective strategies in waste 

management that consider economic, eco-

friendly, and social acceptability [2], [6], [9]. The 

effective and efficient design of municipal solid 

waste management networks can significantly 
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reduce investment, infrastructure, operational, 

and recycling costs, while also enhancing overall 

sustainability [10].  

Municipal solid waste management comprises 

a series of activities, including waste generation, 

separation, storage, collection, transportation, 

treatment, recycling, and final disposal, carried 

out with careful consideration for public health, 

economic efficiency, environmental conservation, 

and responsiveness to community needs [1], [11], 

[12], [13], [14]. Within the solid waste 

management process, waste collection and 

transportation are among the most critical, 

complex, and challenging operational activities. 

Transportation, in particular, plays a vital role in 

these stages and is estimated to account for 50–

80% of the total cost of solid waste management 

[8], [15], [16], [17], [18]. 

The collection, transportation, and disposal of 

solid waste constitute a crucial component of 

sustainable solid waste management strategies in 

many municipalities. Despite involving 

significant expenditures, these activities often 

receive insufficient attention [4], [19]. Collection 

activities encompass not only the gathering of 

recyclable solid waste but also its transportation 

to designated locations where the collection 

vehicles are subsequently emptied [20], [21].  

The environmental consequences of 

inadequate waste management, encompassing air 

and water pollution as well as greenhouse gas 

emissions, are significant. With the rapid pace of 

urbanization, communities are increasingly 

challenged to achieve sustainability objectives 

that integrate economic, environmental, and 

social dimensions [3], [22]. Although waste 

management practices have advanced, several 

enduring challenges persist. Inefficient routing 

contributes to elevated operational costs and 

increased carbon emissions, while fluctuations in 

waste generation complicate collection scheduling 

and the efficient allocation of resources [4]. To 

tackle these pressing challenges, optimizing waste 

collection and transportation systems has become 

a critical priority [2]. Implementing efficient 

routing strategies can significantly reduce 

operational costs and environmental impact, 

while simultaneously enhancing the quality of 

service provided to communities [1]. 

As environmental regulations become 

increasingly stringent, municipalities are required 

to address compliance with sustainability 

standards, necessitating strategic waste 

management approaches that integrate 

sustainable practices. In numerous research 

studies, the waste collection problem within a 

given area is modeled as a Vehicle Routing 

Problem (VRP) to develop efficient and effective 

collection routes [23]. The VRP iss classified as an 

NP-hard combinatorial optimization problem, 

making it inherently difficult and complex to 

solve using exact methods. Consequently, 

heuristic and metaheuristic approaches are 

commonly employed to obtain near-optimal 

solutions efficiently [24].   

Several studies have addressed the VRP in 

waste collection while considering sustainability 

aspects. For example, Akhtar et al. [15] developed 

a Backtracking Search Algorithm utilizing smart 

bins. Their research incorporated economic 

sustainability by seeking optimal routing 

solutions, improving fuel efficiency, and reducing 

fuel costs. Environmental sustainability was 

addressed by minimizing CO₂ emissions 

generated during the waste collection process. 

Qiao et al. [3] incorporated the triple bottom line 

aspects of sustainability—economic, 

environmental, and social by combining two 

metaheuristic methods: Particle Swarm 

Optimization (PSO) and Tabu Search (TS). The 

study aimed to minimize the total cost of waste 

collection, reduce CO₂ emissions, and lower 

penalty costs. 

In certain cases, the Vehicle Routing Problem 

(VRP), aimed at optimizing vehicle routes, must 

account for uncertainties such as fluctuating 

demand and travel time, which may vary over 

time. As a result, the VRP can be characterized as 

stochastic or even dynamic in nature [25], [26], 

[27]. To deal whit this, simheuristics approaches 

have become popular in academia [28]. In the 

context of waste collection, the application of 

simheuristics remains highly limited. Although 

considerable efforts have been made to optimize 

waste collection and transportation using VRP 

and metaheuristic techniques, most existing 

studies primarily emphasize economic factors. 

Few have incorporated sustainability 

considerations, especially in addressing demand 

uncertainty within waste collection systems. To 

bridge this gap, the present study proposes a 

simulation-based metaheuristic approach GA-
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DES that integrates economic, environmental, and 

social dimensions while accounting for capacity 

constraints. GA will obtain route optimization 

results based on the distance from point i-j, and 

vehicle capacity. 

 

2. Literature Review 

This section explores the application of 

simheuristics in optimization problems, with a 

particular focus on the Capacitated Vehicle 

Routing Problem (CVRP). The aim of this review 

is to examine prior research, identify existing 

gaps, and provide a foundation for the 

methodological development of this study. 

Simheuristics, which integrate simulation with 

metaheuristic approaches such as GA, have 

proven effective in managing uncertainties in 

waste collection and transportation contexts. 

Research indicates that traditional 

deterministic methods often fall short in adapting 

to the dynamic nature of waste collection logistics, 

highlighting the necessity of a more flexible 

approach. For instance, research by Gruler et al. 

[25] has demonstrated the integration of 

environmental and economic objectives in waste 

management; however, these studies primarily 

emphasize single-objective functions. In contrast, 

this review highlights the need for a 

multidimensional framework that incorporates 

economic, environmental, and social 

dimensions—commonly known as the Triple 

Bottom Line (TBL) in the context of 

sustainability. 

By addressing these gaps, this review lays the 

groundwork for exploring how simheuristics can 

improve efficiency and promote sustainability in 

waste collection. Moreover, foundational theories 

such as Combinatorial Optimization help 

elucidate the complex interdependencies inherent 

in vehicle routing and resource allocation, 

underscoring the relevance of this study's 

approach to contemporary waste management 

challenges.  

VRP is defined as the task of determining 

optimal routes for a fleet of vehicles to deliver 

goods to multiple locations, with the objective of 

minimizing transportation costs while adhering to 

constraints such as vehicle capacity and delivery 

time windows [29]. The CVRP, a specific variant 

of the VRP, further constrains vehicles to a limited 

capacity [1], [2], [15], [30]. This study focuses on 

the CVRP, addressing the complexities associated 

with wood waste transportation under capacity 

constraints. A simheuristics-based optimization 

algorithm is employed as the independent 

variable, with its impact on waste collection 

performance evaluated through total cost, carbon 

emissions, and overall operational efficiency—

collectively serving as the dependent variables.  

Simheuristic algorithms are specialized 

simulation-optimization approaches aimed to 

efficiently handle optimization problems with 

uncertainty [30]. Simheuristics play a significant 

role due to their simplicity and relatively low 

computational overhead compared to 

conventional metaheuristics, making them an 

attractive approach for solving stochastic 

combinatorial optimization problems [31]. They 

are widely applied in addressing routing and 

scheduling challenges. The following outlines the 

application of simheuristics across various 

categories of studied objects. 

 

2.1. Simheuristics in Home Healthcare 

Clapper et al. [32] applied simheuristics by 

integrating evolutionary algorithms with 

dynamic simulation-based optimization methods 

to address the routing and scheduling of Home 

Health Care (HHC) services in the Netherlands. 

HHC is a widely adopted service in Western 

countries. The time window constraint was a 

critical consideration, as it directly relates to the 

timely delivery of services as requested by clients. 

The author in his research, developed an Optimal 

Computing Budget Allocation (OCBA)-guided 

simheuristics model adopted from Chen & Lee 

[33].  In contrast to Clapper et al., [32], with the 

same object of HHC, Chen & Lee [33] used 

migrating birds optimization and stochastic 

simulation to perform HHC routing and 

scheduling problem (HHCRSP). While [34] 

focused on a single objective function—

minimizing travel time, shift duration, and 

waiting time. Chen and Lee [33] aimed to reduce 

both travel and service costs. In addressing the 

social objective, they also incorporated penalty 

costs for violations of specified time windows. The 

constraints considered in their study included 

time windows, skill requirements, and working 

hours. Simheuristics have also been applied to 

parallel machine scheduling problems [31], where 

iterated greedy algorithms were used for 
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optimization and Monte Carlo simulation for 

evaluating uncertainty. This approach effectively 

enhanced the objective of minimizing total 

processing time. 

 

2.2. Simheuristics in Omnichannel Ritel and 

Electric Vehicel VRP 

Bayliss et al. [35] addressed the Capacitated 

Vehicle Routing Problem (CVRP) in the context of 

omnichannel retail by employing Local Search 

Neighborhoods (LSN) for optimization and DES 

for system simulation. Their study focused on a 

single-objective function, emphasizing the 

economic aspect, specifically minimizing total 

travel distance and cost. Additionally, Keskin et 

al. [36] applied simulation-based heuristics to 

solve the Electric Vehicle Routing Problem 

(EVRP) with time windows, incorporating 

stochastic waiting times at recharging stations. 

 

2.3. Simheuristics in Waste Collection 

The primary constraint considered is vehicle 

capacity. Simheuristics have also been applied to 

the VRP within the context of waste collection 

processes [25], [37], [38]. Gruler et al. [25] 

employed a biased randomized optimization 

model combined with Monte Carlo simulation, 

incorporating a triple bottom line objective 

function—minimizing total costs and carbon 

emissions, maximizing customer satisfaction, and 

reducing work overload. In contrast, Tirkolaee et 

al. [37] utilized an ant colony optimization 

algorithm alongside Monte Carlo simulation to 

minimize total operating costs, including 

transportation expenses. Yazdani et al. [38] 

applied a GA integrated with stochastic 

simulation to address the collection of 

construction and demolition waste. Further 

details are presented in Table 1 below. 

Based on the literature review, studies that 

incorporate the triple bottom line framework 

remain limited. Specifically, in the context of 

municipal waste, only one study has been 

identified that applies a simheuristics approach 

while considering the triple bottom line 

dimensions [25]. Simheuristics are well-suited for 

addressing uncertainty and stochastic elements in 

both objective functions and constraints, which 

are common in real-world problems. This 

approach facilitates the development of more 

realistic and adaptive solutions to dynamic 

changes [28]. Furthermore, Gruler et al. [25] 

employed biased randomization techniques to 

enhance optimization, demonstrating that this 

method can yield rapid solutions with reasonably 

high quality. However, there remains a research 

gap in integrating the triple bottom line 

perspective with the application of simheuristics 

to waste-related problems. To address this, the 

present study advances simheuristics by 

integrating GA with DES. 

Compared to the biased randomized method 

[25], GA are capable of producing more optimal 

solutions for complex VRP. Moreover, biased 

randomized approaches often yield highly 

variable solutions, whereas GA offers greater 

stability. In comparison to Monte Carlo methods 

[25], DES is more appropriate for transportation 

networks due to its alignment with discrete event 

dynamics [39]. The integration of GA and DES is 

well-suited for addressing the CVRP, as capacity 

constraints can be effectively incorporated during 

the crossover process to generate new 

populations. Additionally, GA is widely 

recognized for its effectiveness in solving complex 

optimization problems [38]. 

 

3. Problem Description 

Indonesia ranks among the world’s leading 

furniture-exporting countries, with an export 

value of USD 1.9 billion that increased by 33% to 

USD 2.5 billion in 2021. Wood waste represents 

the third-largest contributor to this sector. At the 

end of its lifecycle, wood waste is regarded as a 

valuable resource due to its potential for recycling 

and energy recovery [36]. Wood waste 

encompasses a range of materials, including 

forestry residues, sawdust, wood chips, and urban 

wood waste originating from construction and 

demolition activities [40], [41] (Figure 1a). To 

achieve optimal waste collection and 

transportation points, it is essential to establish 

integration between waste generators and end-

users or processing facilities. 

The primary issue in the collection and 

transportation (C&T) of wood waste is the 

occurrence of Over Dimension and Over Loading 

(ODOL) conditions during these processes (Figure 

1b). This situation renders the waste collection 

unsustainable, particularly in relation to the 

environmental objective function, as it increases 

fuel consumption and emissions. Additionally,  
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Table 1. Literature review 

No Name Year 
Problem 

Object 
Approach 

Optimization Simulation 
Objective function 

VRP S R&S E H M S Eco Env Soc 

1 
Clapper 

et al 
2024   √ 

Home 

healthcare 
   √ 

Evolutionary 

algorithm 

Simulation 

dynamically 
√   

2 Fu et al 2024   √ 
Home 

healthcare 
   √ 

Migrating birds 

optimization 

Stochastic 

simulation 
√   

3 Nessari 2024  √  Job shop    √ 
Equilibrium 

optimizer 
Monte Carlo √   

4 
Wang et 

al 
2024 √   

Urban 

logistics 
 √   

Adaptive Large 

Neighborhood 

Search 

- √   

5 
Abu-

Marrul 
2023  √  Machine    √ Iterated greedy Monte Carlo √   

6 
Tirkolaee 

et al 
2023 √   

Medical 

waste 
  √  

Simulated 

annealing 
- √   

7 
Yousefloo 

et al 
2023 √   

Municipal 

waste 
√    

Mixed Integer 

Linear 

Programming 

- √ √ √ 

8 
Bazirha et 

al 
2022   √ 

Home 

healthcare 
   √ 

Genetic 

algorithm 
Monte Carlo √   

9 
Bayliss et 

al 
2022 √   

Omnichann

el retail 
   √ 

Local search 

neighborhood’s 

Discrete event 

simulation 
√   

10 
Bossa et 

al 
2021 √   

Dairy 

supply 

chain 

 √   

Travelling 

salesman 

problem 

- √   

11 
Keenan et 

al 
2021 √   -    √ 

Saving 

algorithm 
Monte Carlo √   

12 
Keskin et 

al 
2021 √   

EV 

recharging 

station 

   √ 

Adaptive Large 

Neighborhood 

Search 

Discrete event 

simulation 
√   

13 
Yazdani 

et al 
2021 √   

Municipal 

waste 
   √ 

Genetic 

algorithm 

Stochastic 

simulation 
√   

14 
Mojtahedi 

et al 
2021 √   

Municipal 

waste 
  √  

Adaptive 

Memory Social 

Engineering 

Optimizer 

- √ √ √ 

15 
Tirkolaee 

et al 
2020 √   Solid waste    √ Ant colony Monte Carlo √   

16 
Gruler et 

al 
2020 √   

Municipal 

waste 
   √ 

Biased 

randomized 
Monte Carlo √ √ √ 

17 Qiao et al 2020 √   
Municipal 

waste 
  √  

Particle Swarm 

Optimization 

(PSO)- Tabu 

Search (TS) 

- √ √ √ 

18 Wu et al 2020 √   
Municipal 

waste 
  √  

Particle Swarm 

Optimization 

(PSO)- 

Simulated 

Annealing (SA) 

- √ √  

19 
Hannan 

et al 
2018 √   

Municipal 

waste 
  √  

Particle Swarm 

Optimization 

(PSO) 

- √   

20 
This 

Study 
2024 √   

Wood 

waste 
   √ 

Genetic 

algorithm 

Discrete event 

simulation 
√ √ √ 

 

 
Figure 1. (a) Type of wood waste; (b) Overweight wood waste collection; (c) Damaged road 
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Table 2. Matrix origin – destination (OD) (km) 

  Demand Depo 1 2 3 4 5 6 

0 Depo 0 0 4.4 4.1 3,8 1.6 1 5.4 

1 A furniture 30 4.4 0 0.3 0.65 2.7 3.4 4.8 

2 B furniture 25 4.1 0.3 0 0.55 2.4 3 5.2 

3 C furniture 30 3.8 0.65 0.55 0 2.3 2.8 4.1 

4 D furniture 20 1.6 2.7 2.4 2.3 0 1 5.7 

5 E furniture 25 1 3.4 3 2.8 1 0 5.3 

6 F furniture 40 5.4 4.8 5.2 4.1 5.7 5.3 0 

 

ODOL trucks contribute to various problems, 

including road damage (Figure 1c) and traffic 

accidents. Therefore, it is essential for the 

government to enforce penalties in the form of 

fines for violations of regulations regarding the 

allowable load per vehicle. Currently, the vehicle 

used for transporting wood waste is a Colt Diesel 

Double (CDD), which has a standard capacity of 4 

to 5 tons. Each sack of wood waste weighs 

approximately 4 to 5 kilograms. During the 

transportation process, a total of 170 sacks are 

carried (as shown in Table 1), resulting in an 

estimated total weight of around 7 tons. This 

indicates that the vehicle is operating under 

ODOL conditions, as illustrated in Figure 1b. 

Therefore, this study aims to address the CVRP 

in the context of wood waste collection by 

incorporating the triple bottom line objectives: the 

economic aspect focuses on determining the 

optimal route to minimize transportation time 

and costs; the environmental aspect aims to 

reduce carbon emissions; and the social aspect 

seeks to minimize associated social costs. The 

following presents the origin-destination data 

matrix for the wood waste collection process in 

Mlonggo, Jepara, Central Java. 

 

3.1. Problem Assumptions and Formulation 

The assumptions used are as follows: 

a. There is only 1 depot, as the initial point of 

departure and the final point of return. 

b. The depot in this case also functions as a wood 

waste storage warehouse. 

c. The vehicle departs empty, then the vehicle 

returns to the depot with wood waste. 

d. Vehicles have the same capacity limit. 

e. Each point can only be visited by 1 time by 1 

vehicle. 

f. Fuel consumption for overweight trucks is at a 

ratio of 1:4, meaning 1 liter of fuel is used for 

every 4 kilometers traveled, whereas for non-

overweight trucks, the consumption ratio is 

1:6, with 1 liter of fuel covering 6 kilometers. 

g. The use of fuel oil is always added 5 liters for 

reserves. 

h. Vehicles can travel more than once within the 

same area, but at different points. 

The mathematical formulation is presented 

below. Then parameters and variable decisions 

are also presented (Table 3). 

 

Objective Function 

a. Transportation Cost 

𝐶𝑇 =  𝐶𝑓 + 𝐶𝑣 ∑ ∑ ∑ 𝑋𝑖𝑗𝑣

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑣=1

 (1) 

b. Fuel Consumption 

𝐹𝑐 =  ∑ ∑ ∑ 𝑋𝑖𝑗𝑣

𝐷𝑖𝑗

𝐹𝑐𝑖𝑗𝑣

+ 5

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑣=1

 (2) 

c. Carbon Emission 

𝐸𝐶𝑂2
= (∑ ∑ ∑ 𝑋𝑖𝑗𝑣

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑣=1

𝐹𝑐) ∗ 𝐹𝑒 (3) 

d. Carbon Emission Tax 

𝑇𝐶𝑥 =  𝐸𝐶𝑂2
∗ 𝐶𝑥 (4) 

e. Penalty Cost 

𝑇𝐶𝑝 = (∑ ∑ ∑ 𝑋𝑖𝑗𝑣𝐾𝑖𝑗𝑣)

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑣=1

∗ 𝐶𝑝 (5) 

 

Objective Function 

Minimize Z = (Eq. (6)) 

 

∑ ∑ ∑ 𝑋𝑖𝑗𝑣 +  ∑ ∑ ∑ 𝑋𝑖𝑗𝑣  

𝐶𝑣

𝑗=0

𝐶𝑣

𝑖=0

𝐶𝑣

𝑣=1

𝐶𝑓

𝑗=0

𝐶𝑓

𝑖=0

𝐶𝑓

𝑣=1

+  𝑇𝐶𝑥 =  𝐸𝐶𝑂2
∗ 𝐶𝑥 + (∑ ∑ ∑ 𝑋𝑖𝑗𝑣𝐾𝑖𝑗𝑣)

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑣=1

∗ 𝐶𝑝 (6) 
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Table 3. Parameters and decision variables 

Parameters Description Unit 

N All nodes {i = 1,2,…,n}, 0 is the depot - 

V All vehicle - 

K Vehicle capacity Sack 

M Amount of wood waste Sack 
𝐷𝑖𝑗 Distance from i to j km 

T Number of trips - 

CT Transportation cost IDR 
𝐶𝑓 Fixed cost of transportation IDR 
𝐶𝑣 Variable cost of transportation IDR 
𝐹𝑐 Fuel consumption Liter 

𝐸𝐶𝑂2
 Emission carbon Kg/CO2 

𝑇𝐶𝑥 Tax emission, then 𝐶𝑥 is tax cost amount IDR 
𝑇𝐶𝑝 Penalty cost, then 𝐶𝑝 is penalty cost amount IDR 
𝐹𝑒 Emission factor KgCO2/kWh 

Variable Explanations 

𝑋𝑖𝑗𝑣 1= if vehicle v visits from node i to j, 0 = otherwise 
𝑌𝑖𝑣 1= if vehicle v visits from to node i, 0 = otherwise 
𝑇𝑣 1= if vehicle v makes more than 1 trip, 0 = otherwise 

𝐹𝑐𝑖𝑗𝑣
 divided by 4 (liter) if vehicle v visits from node i to j is overweight,  divided by 6 (liter) 

if vehicle v visits from node i to j is normal 
𝐾𝑖𝑗𝑣 1= if vehicle v visits from node i to j over capacity, 0 = otherwise 

 

Subject to 

∑ ∑ ∑ 𝑋𝑖𝑗𝑣 = 1   ∀𝑖 = 0,1,2, … … ,0

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑉=1

 (7) 

∑ ∑ 𝑋𝑖𝑣𝐾 = 0

𝑁

𝑖=0

𝑉

𝑉=1

  (8) 

∑ ∑ ∑ 𝑀𝑖𝑗𝑣 ≤ 𝐾 , ∀𝑖 = 0,1,2, … … ,0

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑉=1

 (9) 

∑ ∑ 𝑌𝑖𝑣 = 1, ∀𝑖 = 1,2, … … , 𝑁

𝑁

𝑖=1

𝑉

𝑉=1

 (10) 

∑ ∑ ∑ 𝑋𝑖𝑗𝑣𝑇𝑣 ≥ 1 , ∀𝑖𝑗 

𝑁

𝑗=0

𝑁

𝑖=0

𝑉

𝑉=1

 ≠ 𝑏𝑒𝑓𝑜𝑟𝑒 (11) 

Objective function model (1) represents the 

economic aspect, models (2) to (4) address 

environmental aspects, and model (5) reflects the 

social aspect. Model (6) integrates all objective 

functions into a single cost-based optimization 

formulation, where transportation costs represent 

the economic component, emission tax costs 

correspond to the environmental component, and 

penalty costs reflect the social component. 

Constraint (7) ensures that each vehicle departs 

from and returns to the depot. Constraint (8) 

specifies that vehicles must start their routes 

empty. Constraint (9) enforces that the waste 

transported does not exceed the vehicle’s capacity. 

Constraint (10) ensures that each collection point 

is visited only once. Constraint (11) allows 

vehicles to make multiple trips, each visiting 

different points from previous trips. 

 

3.2. Simheuristics (GA-DES) 

GA is recognized as one of the most powerful 

models in metaheuristics for solving complex 

problems [42]. While DES refers to modeling 

systems with random variables that change over 

time (dynamic systems), DES is widely used in 

manufacturing and supply chain systems [43]. In 

this study, simheuristics is performed by finding 

the optimal value of GA operations, then these 

optimization results are used to configure 

simulations, where simulations are used to 

evaluate the feasibility of solutions obtained from 

GA [44]. The steps of GA as follows Table 4. 

Where 𝑛𝑐 is number of customer, 𝑇𝑘  is truk 

capacity, 𝑃𝑧 is population size, 𝐶𝑟 is crossover rate, 

𝐺𝑛 is number of generation, 𝑀𝑟 is mutation rate. In 

contrast to Bazirha et al., [45], Rabe et al., [28] and 

Yazdani et al., [38] this study incorporates 

capacity constraints into the GA process, ensuring 

that during the crossover operation, the 

combination of two parent solutions—both of 
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which represent valid routes adhering to capacity 

limits—produces offspring solutions that also 

comply with these constraints.  

If any offspring solution exceeds the capacity 

(≥ 𝑇𝑘 ), strategies such as re-routing or load 

reassignment are used to correct this violation 

before further evaluation. Additionally, the 

mutation process includes a capacity verification 

step, ensuring that any modifications to the route 

or distribution remain within the defined capacity 

limits.; if the mutation results in an overload (≥𝑇𝑘), 

the solution is discarded or readjusted within 

acceptable limits. This iterative approach ensures 

that, through successive generations, the GA 

progressively evolves toward an optimal routing 

solution that enhances efficiency while satisfying 

cargo capacity constraints.  

Therefore, based on the results of the 

algorithm, the optimal solution corresponds to the 

route with the shortest distance. This selected 

route is then used to calculate travel time, 

transportation costs, emissions produced, 

emission taxes, and penalty costs. This route will 

also be used as 𝐸0 = entity in DES simulation. The 

procedure for DES is as follows (Table 5). 

Simpy is basically the library or function used 

to perform DES simulation in Phyton. DES starts 

by inputting parameters including alternative 

solutions 𝑆𝑎𝑙𝑡  (𝑀𝑙𝑜𝑛𝑔𝑔𝑜1 , … , 𝑀𝑙𝑜𝑛𝑔𝑔𝑜𝑛) , that has 

been prepared, and the distance of route solutions 

generated by the GA, travel time 𝑇𝑡𝑖𝑚𝑒 , 

transportation cost CT, carbon emission 𝐸𝐶𝑜2, tax 

emission 𝑇𝐶𝑥 , penalty cost 𝑇𝐶𝑝 and total cost 𝑇𝐶. 

Entities in this case are several simulations that 

will be run based on predefined parameters, for 

example ("Mlonggo 1", 19.25, 43, 556725, 23.35375, 

700.61, 24000000, 500000, 25057425.61). Different 

from Bayliss et al., [35] and Keskin et al., [36], in 

this study, the DES accounts for varying road 

conditions through three simulation scenarios: 

under light traffic, vehicle speed increases by 20%; 

under normal traffic, speed remains unchanged; 

and under heavy traffic, speed decreases by 40%. 

The DES identifies the optimal solution among 

several alternatives based on the total cost defined 

in Eq. (6). Figure 2 below, is a diagram of the GA-

DES simheuristics model performed, where the 

orange box is the constraint used, the yellow box 

illustrates the uncertainty considered and the blue 

box is the result of the GA and DES analysis.  
 

Table 4. GA procedures 

Genetic Algorithm for CVRP Procedure 

Step 1: Input initial data 

1.1 Parameters (𝑛𝑐 , 𝑇𝑘 , 𝑃𝑧, 𝐶𝑟 , 𝐺𝑛, 𝑀𝑟) 

1.2 Coordinates (x,y) 

1.3 Distance matrix (𝑑𝑥𝑦) 

1.4 Amount of waste (𝑚0, … … 𝑚𝑛) 

Step 2 : Generate random N solution in 𝑃1 

2.1 P(i) - Initial solution (𝑃𝑧, 𝑛𝑐) with dtype : integer, will be used for next optimization step. Where 𝑑𝑥𝑦 = 

0,1,2,…….,0 

2.2 Ensure that customer in 𝑃1 <= 𝑇𝑘 

Step 3: Crossover or recombination 

3.1 Parent selection: parent chromosome (𝑃𝑐) − choose two parents x and y from P(i), based on fitness 

value 

3.2 Determine a crossover point: randomly chosen by 𝑃𝑐, where genetic information exchange will occur. 

where 𝑚𝑛<= 𝑇𝑘, child1 = parent2 

3.3 Genetic recombination: Genes between the crossover point and the chromosome ends are exchanged 

between the two parents with capacity constraint to produce new offspring (Figure 3) 

3.4 Offspring Evaluation: After the offspring (𝐼𝑐)are generated, their fitness values are calculated using a 

fitness function to determine how well they solve the given problem. 

3.5 Replacement: The offspring generated can then be used to replace some individuals in the original 

population. 

Step 4: Mutation: mutate each solution with 𝐼𝑐 in population P(i). (Figure 4) 

Step 5: Fitness assignment: evaluate and assign a fitness value of each solution in P(i) which has been mutated 

before. If 𝑚𝑡 >  𝑇𝑘 will be penalized. 

Step 6 : Selection: select N solutions from P(i), based on their fitness value with capacity constraint. 

Step 7 : Stopping criteria when the result is satisfied, or return to step 3 if else. 

Output : Best solution based on route (𝑆𝑟𝑜𝑢𝑡𝑒) 
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Table 5. DES procedures 

Discrete Event Simulation with Initial Solution from GA 

Use the SimPy  

Step 1: Initial simulation environment 

Parameters (𝑆𝑎𝑙𝑡, 𝐷(𝑠𝑟𝑜𝑢𝑡𝑒), 𝑇𝑡𝑖𝑚𝑒 , 𝐶𝑇, 𝐸𝐶𝑜2 , 𝑇𝐶𝑥, 𝑇𝐶𝑝, 𝑇𝐶) 

Step 2: Define simulation process 

env.process(truck.run_trip()) 

Step 3: Create simulation environment 

Entity based on parameters 

Traffic conditions simulation (light, normal, heavy) 

Step 4: Run the simulation 

Call env.run() 

Output: Best solution (𝑆𝑏𝑒𝑠𝑡) based on total cost 

 

 
Figure 2. Simheuristics diagram 

 

4. Results and Discussion 

4.1. Simheuristics 

This entire algorithm was done using Spyder 

(Phyton 3.12) running on a laptop with Intel® 

Core™ i5-7200U CPU @ 2.5Ghz. Table 2 is an 

example of an OD matrix related to wood waste 

collection. Where existing route (𝑇0) is 0-1-2-3-4-5-

6-0 with 𝐷𝑖𝑗𝑡𝑜𝑡𝑎𝑙 = 19,25 km, CT=  IDR 556,725, 𝐸𝐶𝑂2
 

= 23,35375 Kg/CO2. Because 𝑇0  > 𝑇𝑘 then added 

𝑇𝐶𝑝 in accordance with the applicable regulations 

in Indonesia according to Law Number 22 Year 

2009 is IDR 500,000. So the total cost becomes IDR 

1,057,425.61. After processing the data using GA, 

the initial population (𝑃𝑖) was obtained, as follows 

Table 6. 

After obtaining 𝑃𝑖  with 𝐷𝑖𝑗𝑡𝑜𝑡𝑎𝑙  from 

𝑃1,……,𝑛 and fitness value f, in GA process, 

crossover process is performed with rate 0.75 [46]. 

This crossover process is done by crossing the 

genetic parents (mom and dad) to get a new child 

or offspring (Figure 3) with the starting and ending 

points xy = 0 namely depot, and ensuring that 

each child obtained does not exceed the 

predetermined  𝑇𝑘. Following the generation of a 

new offspring, a mutation process is performed to 

preserve population diversity and prevent 

convergence to local optima, as illustrated in 

Figure 4. 

Mutation is done with a rate of 0.5, the results 

of individual permutations will be calculated 

𝐷𝑖𝑗𝑡𝑜𝑡𝑎𝑙  and the f value, and the last step is to 

choose the population that will be best solution, 

details are as follows Table 7. 

Based on the mutation results in Table 7, 

Individual 1 achieves the shortest total distance, 

measuring 20.45 kilometers. The corresponding 

routes are illustrated in Figure 5 and Figure 6. This 

selected route or trip will be used as an initial 

reference (𝑇1) for calculating transportation costs, 

emissions, emission taxes and ticket fees. 𝐶𝑇 =
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𝐶𝑓 + 𝐶𝑣 (1) , where 𝐶𝑓 include the driver's salary 

(𝐶𝑠) has been set by the company, then 𝐶𝑣 consists 

of truck rental costs (𝐶𝑟𝑡) , fuel cost (𝐶𝑓𝑢𝑒𝑙)  and 

driver's meals (𝐶𝑑𝑟).  To calculate fuel oil 

consumption, for vehicles that do not exceed 

capacity, 𝐹𝑐 =  (
𝐷𝑖𝑗

6
) + 5,  assuming fuel 

consumption ratio is 1 liter for 6 km, while for 

vehicles with overload capacity will be calculated 

by 𝐹𝑐 = (
𝐷𝑖𝑗

4
) + 5, assuming 1 liter is used for 4 km, 

and an additional 5 liters as backup fuel for each 

vehicle. 

 
Figure 3. Crossover process 

 

 
Figure 4. Mutation process for individual 1 

 
Table 6. Initial population  

Individual Nodes Distance (KM) Fitness 

1 [[0, 4, 5, 1, 0], [0, 3, 2, 6, 0]] 25.35 0.039448 

2 [[0, 3, 6, 4, 0], [0, 1, 2, 5, 0]] 23.90 0.041841 

3 [[0, 2, 4, 5, 0], [0, 3, 6, 1, 0]] 25.60 0.039062 

4 [[0, 5, 3, 2, 0], [0, 1, 6, 4, 0]] 24.95 0.040080 

5 [[0, 5, 3, 2, 0], [0, 6, 1, 4, 0]] 22.95 0.043573 

6 [[0, 4, 2, 5, 0], [0, 6, 3, 1, 0]] 22.55 0.044346 

7 [[0, 4, 6, 1, 0], [0, 3, 2, 5, 0]] 24.85 0.040241 

 
Table 7. Solution after mutation 

Population Nodes Distance (KM) Fitness 

Individual 1 [[0, 4, 2, 1, 3, 0], [0, 5, 6, 0]] 20.45 0.048900 

Individual 2 [[0, 1, 3, 2, 4, 0], [0, 6, 5, 0]] 21.3 0.046948 

Individual 3 [[0, 6, 5, 4, 0], [0, 1, 3, 2, 0]] 23 0.043478 

Individual 4 [[0, 5, 4, 2, 0], [0, 6, 3, 1, 0]] 23.04 0.043384 

Individual 5 [[0, 2, 6, 5, 0], [0, 3, 1, 4, 0]] 24.3 0.041068 

Individual 6 [[0, 6, 5, 4, 0], [0, 1, 3, 2, 0]] 23 0.043478 

Individual 7 [[0, 2, 3, 4, 1, 0], [0, 5, 6, 0]] 25.75 0.038835 

 

 
Figure 5. Visualitation of all individuals 
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Figure 6. Visualitation of individual 1 

 

If 𝑇0 is 0-1-2-3-4-5-6-0, at 𝑇1 it is known the trip 

is divided into 2 with newest route is 0, 4, 2, 1, 3, 0 

and 0, 5, 6, 0. It is assumed that there will be 2 

possible uses of the vehicle, i.e. using 1 vehicle 

(𝑣1) to serve 2 trips at once, or 2 vehicles (𝑣2)that 

will serve each trip. This basis will be taken into 

consideration for alternatives, followed by route 

alternatives 𝑇0 and 𝑇1. Overall, the alternative 

solutions are presented in Table 8 below, along 

with their objective functions 

𝐸𝐶𝑂2
 was obtained from 𝐹𝑐 ∗ 𝐹𝑒 , where 𝐹𝑒 is 

2,83. Thus  𝑇𝐶𝑥  obtained from 𝐸𝐶𝑂2
* IDR 30,00, in 

accordance with regulations of Law no. 7 of 2021. 

While 𝑇𝐶𝑝 only applies to vehicles with 

overweight. Therefore, in the alternative solution, 

𝑇𝐶𝑝 only applied for 2 simulations, namely OW-

𝑣1 - 𝑇1  and OW- 𝑣1 - 𝑇1 . All these alternative 

solutions are used as entities in DES function. 

From DES results, obtained the best solution, 

namely Non-OW- 𝑣1 - 𝑇1 , which is a condition 

where 1 vehicle serves 2 trips on a route that has 

been optimized using GA, where the result of 

transportation costs is IDR 547,176 with 𝐸𝐶𝑂2
 is 

24,06775 Kg/CO₂, so it is necessary to pay 𝑇𝐶𝑥 IDR 

722,03 without having to pay a penalty cost for not 

violating the determined vehicle capacity 

requirements. Based on Table 9, A-5 has the lowest 

total cost and carbon emissions. Some of the main 

outcomes of this research are: 

a. The developed simheuristic model can be 

concurrently applied to CVRP while 

incorporating the sustainability dimensions of 

the triple bottom line. 

b. A single vehicle making one overweight trip 

incurs higher costs compared to using two 

vehicles making separate trips within normal 

capacity limits. 

c. The effectiveness of the proposed method is 

demonstrated by its alignment with the 

mathematical objective (6), which aims to 

minimize the total cost across all sustainability 

dimensions. Prior to the application of 

simheuristics, the total cost was IDR 

1,057,425.61; following the implementation of 

the simheuristic approach, the total cost was 

reduced to IDR 549,625.47. 

This study presents a novel application of 

simheuristics by integrating simulation with 

metaheuristics to manage uncertainty in waste 

collection routing, providing a more robust 

solution compared to the traditional deterministic 

approaches previously employed by Yousefloo et 

al. [45]. Unlike the previous study by Hannan et 

al. [15], Trikolaee et al. [37], [47] and Yazdani et al. 

[38], which only relied on a single objective 

function, i.e., economic, this study explicitly 

integrates economic, environmental, and social 

factors for a more sustainable waste management  
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Table 8. Alternative solution 

Alternative Nodes D T CT 𝑬𝑪𝑶𝟐
 𝑻𝑪𝒙 𝑻𝑪𝒑 

OW-𝑣1-𝑇0 (A-1) 0-1-2-3-4-5-6-0 19,25 43 IDR 556.725 23,35375 IDR         700,61  IDR 500.000 

Non-OW- 𝑣1-𝑇0 (A-2) (0-1-2-3-0), (0-4-5-6-0) 22,35 49 IDR 549.330 25,19825 IDR         755,95   -    

Non-OW- 𝑣2-𝑇0 (A-3) (0-1-2-3-0), (0-4-5-6-0) 22,35 49 IDR 931.176  35,96775 IDR     1.079,03   -    

OW-𝑣1 − 𝑇1 (A-4) 0-4-2-1-3-5-6-0 14,05 40 IDR 547.885  20,25975 IDR         607,79  IDR 500.000  

Non-OW- 𝑣1-𝑇1 (A-5) (0-4-2-1-3-0), (0-5-6-0) 20,45 44 IDR 547.176  24,06775 IDR         722,03  -    

Non-OW- 𝑣2-𝑇1 (A-6) (0-4-2-1-3-0), (0-5-6-0) 20,45 44 IDR  932.876  36,86025 IDR     1.105,81    -    

Where, OW (Overweight), Non-OW (Non-Overweight) D (Distance/km), T (Time/Minutes), Eco2 (Carbon 

Emission/KgCO2), TCx (Tax Emission/IDR), TCp (Penalty Cost/IDR). 

 
Table 9. DES result based on traffic condition 

Traffic Condition 
Shortest Travel 

Time 

Highest Fuel 

Efficiency 

Lowest Total 

Cost 

Lowest Carbon 

Emissions 

Light A-6 (20.52 min) A-2 (4.00 L) A-5 (549,625.47) A-5 (24.07 kg) 

Normal A-2 (24.32 min) A-2 (4.00 L) A-5 (549,625.47) A-5 (24.07 kg) 

Heavy A-2 (38.83 min) A-2 (4.00 L) A-5 (549,625.47) A-5 (24.07 kg) 

 

strategy which is rarely researched [3]. In contrast 

to Qiao et al. [3], with similarities in focusing on 

the triple bottom line aspect, he combined two 

metaheuristics namely Partical Swarm 

Optimization (PSO) and Tabu Search (TS). 

Moreover, the simulation techniques employed in 

these prior studies have been largely confined to 

Monte Carlo methods [25], [26], [31], [37], [45], 

[48], which often fail to account for dynamic 

uncertainties in service demand. This limitation 

hinders the adaptability of routing strategies in 

real-world contexts, where waste generation is 

inherently non-uniform and subject to significant 

fluctuations over time. To address these 

limitations, this research proposes a simheuristic 

approach that integrates a GA with DES to 

enhance sustainability in waste collection under 

uncertainty. Beyond its significant contribution to 

the TBL dimensions, this study also brings 

attention to ODOL issues an often-overlooked 

aspect in vehicle routing which have critical 

implications for both operational efficiency and 

environmental sustainability. 

Thus research is conducted on social aspects, 

namely penalty costs for vehicle overcapacity 

violations, in contrast to Qiao et al. [3] used 

penalty costs for overload assignment conditions, 

then Fu et al. [35] used for excess time.  This study 

advances the genetic algorithm (GA) by 

incorporating vehicle capacity constraints, an 

aspect that has not been addressed in previous 

research [28], [38], [45]. Sensitivity analysis of GA 

parameters, conducted on mutation rate and 

number of generations, provides deeper insight 

into optimization stability, an aspect rarely 

explored in previous studies conducted by 

Yazdani et al. [38] and Bazirha et al. [45]. From an 

axiological perspective, this research offers 

valuable contributions to the waste transportation 

industry, logistics companies, and transportation 

policy makers by supporting the optimization of 

vehicle route management. It emphasizes the 

integration of sustainability considerations and 

the application of computer programming and 

simulation to address uncertainty. 

 

4.2. Sensitivity Analysis 

Sensitivity analysis of genetic algorithms is 

crucial, as it provides a deeper understanding of 

how the algorithm’s performance responds to 

variations in key parameters [38], [49]. Sensitivity 

analysis enables the authors to identify which 

parameters have the greatest impact on the 

performance of the GA. Sensitivity tests are also 

essential for assessing the stability and 

convergence speed of the genetic algorithm in 

response to changes in parameter values. This 

evaluation is crucial to ensure that the algorithm 

consistently converges toward an optimal 

solution under varying conditions. In this study, 

the authors performed a sensitivity analysis on the 

mutation rate and the number of generations. 

Figure 7 presents the results of the sensitivity 

analysis conducted at mutation rates of 0.05, 0.1, 

0.2, and 0.5. The box plot illustrates the 

interquartile range (IQR), which spans from the 

first quartile (Q1, 25%) to the third quartile (Q3, 

75%). The line within the box represents the 

median (Q2, 50%), indicating the central value of 

the dataset, while the whiskers (lines extending 
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beyond the box) depict the data distribution 

excluding outliers 𝑀𝑟 0.05 has the lowest fitness 

value is 0.27, 𝑀𝑟 0.1 with fitness value 0.35, 𝑀𝑟 0.2 

with fitness value 0.45, and 𝑀𝑟 0.5 with fitness 

value is 0.55. When viewed from the box size and 

whisker length, it tends to be small and stable for 

each  𝑀𝑟 , its indicates that the data is quite 

consistent. To assess whether there is a significant 

difference, an ANOVA test was performed, 

yielding a sum of squares (sum_sq) value of 0.05. 

This value reflects the extent to which variations 

in average fitness can be attributed to differences 

in mutation levels. A larger sum of squares 

(sum_sq) value indicates that the differences 

between groups have a greater influence on the 

total variation of the data. Degree of freedom 

values (df) = 3, where each category on 𝑀𝑟 is 3. F 

value = 25.42 > 0.05 indicates that a significant 

difference exists between at least one pair of 

mutation levels in affecting average fitness. A 

higher F value indicates a more significant 

difference between these groups. Since the P-

value is 0.00001, which is less than 0.05, it can be 

concluded that the differences between mutation 

levels are not due to chance and significantly 

affect average fitness. 

Furthermore, sensitivity analysis was 

conducted at G_n each 20, 50, 100 and 200. The 

results show that at 𝐺𝑛= 20 best distance of 20.65 

KM is obtained, 𝐺𝑛= 50 with best distance 20.45 

KM, 𝐺𝑛= 100 with distance of 20.45 KM, and 𝐺𝑛= 

200 with distance of 20.85 KM (Table 10). The 

results of the ANOVA test indicate that the F-

statistic value is 1.34, which is greater than 0.05, 

suggesting that there is variation or difference 

among the groups. However, the P-value is 0.28, 

which exceeds 0.05, indicating that there is 

insufficient evidence to reject the null hypothesis. 

This suggests that there is no significant difference 

in the distances traveled across different 

generations. In other words, the solutions 

identified by the genetic algorithm do not show 

substantial improvement from one generation to 

the next in terms of distance reduction. 

 
Table 10. Solution of each generation 

Num. of 

generation 
Route Distance Fitness Best Route 

20 

[[0, 3, 2, 1, 4, 0], [0, 6, 5, 0]] 

[[0, 6, 3, 4, 0], [0, 2, 1, 5, 0]] 

[[0, 2, 6, 5, 0], [0, 1, 4, 3, 0]] 

[[0, 2, 1, 6, 0], [0, 5, 3, 4, 0]] 

[[0, 4, 1, 2, 5, 0], [0, 3, 6, 0]] 

[[0, 2, 4, 3, 0], [0, 6, 1, 5, 0]] 

[[0, 1, 5, 3, 0], [0, 4, 2, 6, 0]] 

20.65 km 

22.20 km 

28.80 km 

22.30 km 

21.90 km 

27.20 km 

29.00 km 

0.0484 

0.045 

0.0347 

0.0448 

0.0456 

0.0367 

0.0344 

[[0, 3, 2, 1, 4, 0], [0, 6, 5, 0]] 

 

50 

[[0, 2, 3, 6, 0], [0, 5, 4, 1, 0]] 

[[0, 3, 1, 2, 4, 0], [0, 5, 6, 0]] 

[[0, 3, 6, 4, 0], [0, 2, 1, 5, 0]] 

[[0, 5, 6, 2, 0], [0, 1, 4, 3, 0]] 

[[0, 1, 2, 3, 0], [0, 5, 4, 6, 0]] 

[[0, 2, 5, 3, 0], [0, 4, 6, 1, 0]] 

[[0, 6, 1, 3, 0], [0, 2, 5, 4, 0]] 

23.25 km 

20.45 km 

24.00 km 

28.80 km 

22.15 km 

30.20 km 

24.35 km 

0.043 

0.048 

0.416 

0.451 

0.034 

0.045 

0.033 

[[0, 3, 1, 2, 4, 0], [0, 5, 6, 0]] 

100 

[[0, 4, 2, 1, 3, 0], [0, 5, 6, 0]] 

[[0, 1, 3, 2, 4, 0], [0, 6, 5, 0]] 

[[0, 6, 5, 4, 0], [0, 1, 3, 2, 0]] 

[[0, 5, 4, 2, 0], [0, 6, 3, 1, 0]] 

[[0, 2, 6, 5, 0], [0, 3, 1, 4, 0]] 

[[0, 6, 5, 4, 0], [0, 1, 3, 2, 0]] 

[[0, 2, 3, 4, 1, 0], [0, 5, 6, 0]] 

20.45 km 

21.30 km 

23.00 km 

23.04 km 

24.30 km 

23.00 km 

25.75 km 

0.048 

0.046 

0.043 

0.043 

0.041 

0.043 

0.038 

[[0, 4, 2, 1, 3, 0], [0, 5, 6, 0]] 

 

200 

[[0, 6, 4, 2, 0], [0, 1, 3, 5, 0]] 

[[0, 4, 5, 3, 0], [0, 6, 1, 2, 0]] 

[[0, 2, 6, 5, 0], [0, 1, 4, 3, 0]] 

[[0, 6, 3, 5, 0], [0, 2, 4, 1, 0]] 

[[0, 1, 5, 2, 0], [0, 3, 4, 6, 0]] 

[[0, 6, 5, 3, 0], [0, 4, 1, 2, 0]] 

[[0, 4, 3, 2, 1, 0], [0, 5, 6, 0]] 

26.45 km 

23.80 km 

28.80 km 

26.90 km 

32.10 km 

26.00 km 

20.85 km 

0.037 

0.042 

0.347 

0.371 

0.311 

0.038 

0.047 

[[0, 4, 3, 2, 1, 0], [0, 5, 6, 0]] 

 

http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/index


 

Automotive Experiences 172 
 

 
Figure 7. Sensitivity for mutation rate 

 

 
Figure 8. Boxplot of 𝐺𝑛 sensitivity 

 

Box plots (Figure 8) indicate that while the 

distributions are approximately normal at 20 

generations, the ranges are considerable and 

exhibit high variability. At 50 generations, there 

are noticeable fluctuations in solution finding, 

with some values exceeding the median, 

indicating the presence of suboptimal solutions. 

At generation 100, the box plot is smaller, 

indicating reduced variation, which suggests that 

the solution is more stable. Additionally, the 

median is positioned centrally, signifying greater 

consistency compared to the 50-generation 

results. In contrast, at 200 generations, the 

variation is considerably larger, with a relatively 

wide range; furthermore, the median is higher 

than that at 100 generations, suggesting that there 

are more non-optimal solutions. Thus, in this 

scenario, overfitting is likely to occur, leading the 

algorithm to explore less efficient solutions. 

 

5. Conclusion 

Transportation waste is a crucial element of 

effective waste management, encompassing the 

logistics involved in collecting, transporting, and 

disposing of wood by-products generated from 

industries such as furniture manufacturing and 

construction. The Capacitated Vehicle Routing 

Problem (CVRP) provides an essential framework 

for optimizing waste collection routes, effectively 

addressing challenges associated with varying 

waste quantities and adhering to vehicle capacity 

regulations. To address these complexities, the 

research utilizes simheuristics—an integration of 

simulation and heuristic methods—alongside 

GA-DES to generate effective solutions amid 

uncertainty. This combined approach takes into 

account the economic, environmental, and social 

dimensions of sustainability. The outcome of the 

genetic algorithm is an optimal route that 

considers capacity, resulting in the deployment of 

two trucks with standard capacity to make 

multiple trips. DES facilitates the identification of 

optimal solutions among various alternatives by 

considering triple bottom line aspects across 

different scenarios of vehicle speed based on road 

conditions. The results from GA-DES were able to 

achieve a 51% reduction in transportation costs, 

utilizing a standard capacity of 5 tons and a 

maximum transport capability of 100 sacks. 

This research makes a significant contribution 

to the literature on the Vehicle Routing Problem 

(VRP) by incorporating sustainability 

considerations. It expands upon the traditional 

VRP framework, which has primarily 

concentrated on optimizing distance and 

transportation costs. Additionally, simheuristics 

provide valuable insights into how uncertainty 

can be integrated into the optimization of vehicle 

routes. However, this study has certain 

limitations, including the use of small-scale 

sample data. Moreover, the simheuristic models 

employed assume a fixed demand distribution, 

whereas in real-world scenarios, demand 

fluctuations are often more dynamic and complex. 

Nonetheless, the global relevance of this research 

lies in its potential applicability across various 

waste management systems. With the continued 

growth of urban populations and the rising 

generation of waste, cities are encountering 

escalating challenges that require innovative 

approaches to achieve sustainable waste 

management. The proposed model enhances 

operational efficiency in waste logistics while also 

supporting global sustainability objectives, 
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particularly those articulated in the Sustainable 

Development Goals (SDGs)—specifically Goal 11 

(Sustainable Cities and Communities) and Goal 12 

(Responsible Consumption and Production). 

Several directions for future research include 

testing the application of this method on a larger 

business scale and incorporating the triple bottom 

line dimensions—particularly the social aspect—

into studies of waste transportation vehicle routing 

problems (VRP). Additionally, simheuristic 

approaches can be employed to address more 

complex VRPs involving uncertainties in waste 

volume and limited collection time. Other 

uncertainty modeling techniques, such as 

stochastic programming, are also appropriate for 

problems with known probability distributions, as 

they enable scenario-based optimal solutions. 

Fuzzy theory is applicable in situations where 

uncertainty cannot be precisely defined, as it allows 

representation through fuzzy sets. Robust 

optimization, on the other hand, is well-suited for 

dynamic operational environments, as it provides 

optimal solutions even amid parameter 

fluctuations. Furthermore, advanced technologies 

such as Artificial Intelligence (AI) and Machine 

Learning (ML) can support the development of 

more sophisticated methods for addressing 

complex routing problems. 
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