

AUTOMOTIVE EXPERIENCES

Vol. 8 No. 2 (2025) pp. 369-389

p-ISSN: 2615-6202 e-ISSN: 2615-6636

Review Paper

An Investigation of Pull and Push Factors in the Commercialization Policy of Electric Motorcycles in Indonesia

Fiky Two Nando^{1,2}, I Ketut Gunarta¹, Putu Dana Karningsih¹

- ¹Department of Industrial and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60117, Indonesia
- ²Department of Industrial Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya 60118, Indonesia
- gunarta@ie.its.ac.id
- https://doi.org/10.31603/ae.13989

Published by Automotive Laboratory of Universitas Muhammadiyah Magelang

Abstract

Article Info Submitted: 27/06/2025 Revised: 09/09/2025 Accepted: 13/09/2025 Online first: 25/09/2025 The ongoing energy crisis underscores the pressing need for more efficient energy utilization, particularly in the transportation sector. In this regard, the shift from conventional fossil fuels to electric vehicles (EVs) is essential for achieving both environmental sustainability and energy efficiency. Several developing countries, including Indonesia, have introduced regulations to promote EV adoption. However, electric motorcycle sales remain stagnant due to persistently low adoption rates. The primary challenge lies in the limited success of commercialization efforts, which continues to hinder broader market penetration in Indonesia. This study aims to identify research opportunities that can support the commercialization of EVs in Indonesia and to explore the push and pull factors influencing this process. An exploratory approach is employed, incorporating bibliometric analysis using R 4.3.1, a scoping literature review, and in-depth interviews with EV experts. The bibliometric analysis highlights the considerable development potential of electric motorcycle commercialization. From in-depth interviews with eleven experts, forty-four influencing factors were identified: twenty-nine of which are newly emerging factors, and fifteen are already established in the literature. Among these, four pull factors were confirmed, while twelve push factors were consistently highlighted by the experts. "Inexpensive product price for consumers" emerged as the most dominant pull factor in accelerating electric motorcycle commercialization, whereas the provision of incentives was the most frequently emphasized push factor driving supportive commercialization policies.

Keywords: Electric motorcycles; Commercialization; Pull factors; Push factors

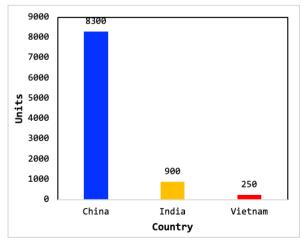
1. Introduction

Currently, the primary source of global energy is fossil fuels, which have a significant environmental impact [1]. A quarter of energy comes from the transportation sector, which, if managed effectively, can help reduce greenhouse gases [2]. Efforts to lower greenhouse gases from the transportation sector can be significantly enhanced by replacing conventional transportation with electric vehicles (EVs) [3]. In addition, the environmental consequences of fossil fuel-powered vehicles have prompted a transition toward electric alternatives

Emissions from the conventional vehicles and fossil fuels, combined with the energy crisis and the demands for energy efficiency, have made these issues increasingly urgent to discuss [5]. Moreover, the impact of climate change, energy consumption, and air quality is driving governments in various countries to accelerate the sale of EVs, while also generating economic benefits and creating jobs for new industries [6]. Therefore, various efforts have been made to accelerate the sale of electric vehicles globally.

Income levels exert a greater influence on the increase in electric motorcycle sales in developing countries than in developed countries [7].

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Consequently, this condition has led to a rising demand for motorcycles in developing countries [8]. In many nations across Asia, Africa, and Latin America, motorcycles constitute the most common mode of transportation [9]. However, the high number of motorcycles has contributed significantly to carbon emissions. In several developing countries, including India, Vietnam, Thailand, and Indonesia, motorcycles are the primary contributors to high levels of carbon emissions [10]. Addressing this issue requires innovation to anticipate the environmental impact caused by carbon emissions produced by these vehicles. Therefore, accelerating the adoption of electric motorcycles in developing countries as a substitute for conventional motorcycles is a key strategy to achieve the global target of reducing carbon emissions.

Based on sales data from 2010 to 2018, the number of electric vehicle users worldwide is projected to reach 30% by 2032 [11]. Although the growth of electric vehicle sales worldwide is expected to accelerate over the next eight years, it is currently growing relatively slow. On the other hand, electric vehicle sales in China is projected to increase rapidly by more than 50% by 2025 [12]. Similarly, projections for electric motorcycle sales indicate positive developments from 2021 to 2030, reaching 5.7% growth in 2030 [10]. The motorcycle population across the Association of Southeast Asian Nations (ASEAN) member states has shown a consistent upward trend, especially in developing countries such as Indonesia, Vietnam, and Thailand. Among these countries, Indonesia records the highest number of motorcycles, with 134,181,607 units, followed by Vietnam with 58 million units and Thailand with 21 million units [13]. The predominance of motorcycles in transportation systems is largely due to the reliance on short-distance travel in metropolitan areas with high population density [14]. However, based on the electric vehicle sales data, Asia, China, India, and Vietnam accounted for the highest electric motorcycle sales in 2023, as illustrated in Figure 1.

Various policies have been implemented to encourage the adoption of electric vehicles among potential consumers, one of which is the provision of significant incentives [15], [16]. Nevertheless, the number of electric vehicles available globally reached only 1% by 2019 [15]. Despite their

various advantages and positive impacts, the market share of electric vehicle sales remains low [17]. There are multiple challenges to accelerating the growth of electric vehicle sales, including the supply of materials that depend on imports and the availability of spare parts [18]. Furthermore, the development of electric vehicles faces various obstacles that hinder the acceleration of electric vehicle sales, including charging systems [1], selling prices, high initial investments, infrastructure, battery technology [19], for manufacture energy storage, negative perceptions [20], customer concerns about electricity networks, battery costs, mileage, additional expenses [21], battery lifespan, the need for fast-charging systems, cost-effectiveness [22], as well as technology and regulations [23].

Indonesia has set a target for the adoption of electric vehicles by 2030, comprising 2.45 million electric motorcycles and 600,000 electric fourwheeled vehicles. The country currently operates 76,000 public charging stations for electric vehicle batteries [24]. In addition, based on the latest data from the Indonesian Ministry of Energy and Mineral Resources, the government aims to have 2 million electric cars and 13 million electric motorcycles on the roads in Indonesia [25]. However, the adoption of electric vehicles in Indonesia remains low due to several challenges. According to data from the Indonesian Central **Statistics** Agency (Badan Pusat Statistik Indonesia), as of August 2024, the number of electric motorcycles had reached only 167,864 units. Market parameters and commercialization are among Indonesia's weaknesses in adopting

Figure 1. Highest-selling electric motorcycles in Asia in 2023 [26]

electric vehicles [27]. Furthermore. other challenges contributing to low market penetration in Indonesia must also be addressed during the transition electric vehicles. to including infrastructure, technology, economics, consumer acceptance [28]. Therefore, this study is conducted to determine factors influencing the motorcycle acceleration of electric commercialization in developing countries, with a particular focus on Indonesia.

The main challenge in promoting electric motorcycle adoption in Indonesia lies on the demand side. Although Indonesia has a large population and is theoretically a significant the penetration rate of motorcycles remains very low. By early 2025, the adoption of new electric motorcycles is estimated to reach around 100,000 units, representing less than 1% of the total vehicles circulating in Indonesia [29]. This indicates that the domestic electric vehicle market is still at an early stage of growth and is facing stagnation in consumer demand [30]. A second challenge is the lack of an adequate ecosystem to support the use of electric vehicles in Indonesia. One crucial aspect is the of widely availability accessible charging infrastructure. As of March 2025, the number of Public Electric Vehicle Charging Stations (EV charging stations) for four-wheeled vehicles in Indonesia was recorded at 3,772 units, distributed across 2,515 locations throughout the archipelago, including Java, Sumatra, Kalimantan, Sulawesi, Bali, Nusa Tenggara, Maluku, and Papua [31]. Although this number shows significant progress, uneven distribution and varying operational readiness remain obstacles to increasing consumer trust and comfort in electric vehicles [32], [33], [34]. Therefore, research related to identifying commercialization factors for electric motorcycle products in developing countriesparticularly Indonesia-remains necessary, potential acknowledging the for electric motorcycle expansion in these countries where conventional motorcycles currently dominate the market.

According to Angelina & Blagojce, 2012, essential factors in commercialization will be grouped into push factors and pull factors because the push and pull factor theory plays a critical role in encouraging and accelerating commercialization and investment [35]. This

study further explains that push and pull factors are commonly applied in the study of international migration, which describes the causes of population movement from the countries of origin to the destination countries. However, in the context of economic activity, these factors can also be used to explain the motivations behind investment decisions in a company to accelerate commercialization or economic growth, for example identifying the factors of electric motorcycle commercialization by grouping pull and push identifying factors of electric motorcycle commercialization in developing countries, especially Indonesia [35].

Several researchers have conducted studies on electric vehicles. Veza *et al.* [36] investigated the challenges and opportunities of designing scenarios for the adoption of electric vehicles in Indonesia and Malaysia. A survey on electric vehicle policy adoption have focused on the effectiveness of policy to improve the number of electric vehicles [37], while other studies examined government policy about giving incentives to push the adoption of electric vehicles. In another study of electric vehicles, researcher explored connection technology and innovation in electric vehicles [38], while another study analyzed the development of technology for filling electric vehicles' infrastructure [34].

Existing literature on electric vehicles often overlooks electric motorcycles as a distinct area of study. Research electric motorcycle on conversions has been conducted by focusing on innovative products moving towards commercialization and examining sustainability aspects of the engines used [39], [40]. However, electric motorcycle conversion differs from electric motorcycles, which have been designed as electric vehicles since the beginning of production. Therefore, research on more objectspecific aspects of the electric motorcycle vehicle still needs to be developed. The classification of research topics is grouped into two main issues, namely electric vehicles and commercialization. The electric vehicle research area is categorized into three sub-areas: challenges and barriers, commercialization, and other related topics.

In comparison, the commercialization research area is divided into new product development (NPD) and product technology. The categorization is determined based on the

grouping of articles found on keyword searches. The field of study on electric vehicles, electric motorcycle conversion, and electric motorcycles is explained in Table 1.

Despite being a barrier to the adoption of electric vehicles, research on the commercialization of electric vehicles, particularly electric motorcycles, has been limited. Visually,

the research gap in this area is illustrated in Figure 2. Previous studies on electric vehicles have examined the challenges, barriers, and push factors that influence electric vehicle adoption, but they have not specifically investigated vehicle commercialization as a driver of sales targets [30], [36], [41]. Meanwhile, research on product commercialization is more closely related to the

Table 1. Electric vehicle articles and commercialization

				Electric Vehicles		Comn	nercialization
Reference	Scope	Objects	Challenges & Barriers	Other Topics	Commerce	NPD	Product Technology
Huang et al.	Government	Electric	√	-	-	-	-
[14]	Policies	Motorcycle					
Habibie et al.	Sustainable	Electric	\checkmark	-	-	-	-
[40]	Evaluation of EM	Motorcycle					
	Conversion	Conversion					
Setiawan et	Policies on	Electric	-	Adoption of	-	-	-
al. [37]	Adoption	vehicles		Electric			
				Vehicles			
Maghfiroh et	Stakeholders'	Electric	-	Technology	-	-	-
al. [38]	Perception of	vehicles		Readiness			
	Technology Readiness						
Mastoi et al.	Infrastructure and	Electric	-	Infrastructure	-	-	-
[34]	Policies	vehicles		and Policy			
. ,				Readiness			
Veza et al.	Opportunities and	Electric	V	-	-	-	-
[36]	Challenges	vehicles					
Ruan et al.	Government's role	The electric	V	-	-	-	-
[42]		bike					
Stenroos and	Commercialization	New product	-	-	-	V	-
Sandberg		development					
[43]		•					
Muda et al.	Product	New product	-	-	-	√	-
[44]	Commercialization	development					
	and Innovation	-					
Habibie and	Commercialization	Electric	√	-	√		-
Sutopo [39]	Study	Motorcycle					
_	-	Conversion					
Ramesan et	The challenges in	Electric	√	-	-	-	-
al. [41]	the adoption	vehicles					
Habibie et al.	Sustainability	Electric	$\sqrt{}$	-	-	-	-
[40]		vehicles					
Guerra [45]	EV Potential	Electric	$\sqrt{}$	-	-	-	-
		motorcycle					
Mo et al. [46]	Commercialization	Electric	-	-	\checkmark	-	-
		vehicles					
Soetopo [47]	Commercialization	Digital	-	-	-	-	√
		Technology					
Latif et al.	Commercialization	New product				\checkmark	-
[48]		development					
Martinez –	Charging System	Electric	-	Infrastructure	-	-	-
Lao <i>et al</i> . [49]		vehicles		and Policy			
				Readiness			
Osorio et al.	Charging System	Electric	-	Infrastructure	-	-	-
[50]		vehicles		and Policy			
				Readiness			

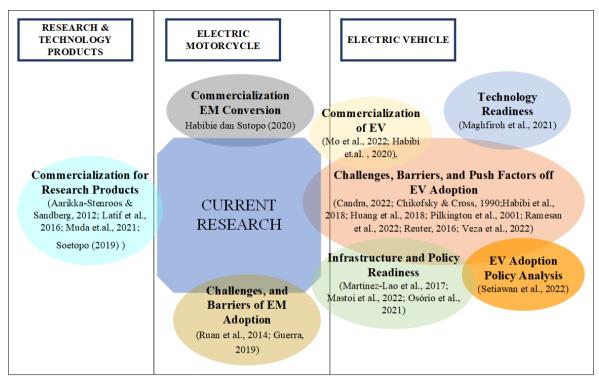


Figure 2. Research gap overview

development of new and technology-related products, as conducted by by several previous researchers. Research on commercialization for electric vehicles remains scarce. For instance, Mo et al. [46] conducted market research on electric vehicle commercialization, focusing on four key areas: government efforts to encourage growth, battery charging infrastructure, vehicle technology, and the discontinuation of electric vehicles. However, this research did not explore the possible factors influencing commercialization, and it was limited to the perspectives of customers and policy. In a study of electric motorcycles, Guerra [45] examined customer preferences for choosing electric motorcycles based on price, speed, range, and charging. Recent research on the electric motorcycle market has developed various subsidy and incentive policy scenarios aimed at reaching target markets [51]. Nevertheless, this research focuses solely on subsidy and emission penalty scenarios and their impact on market share. The exploration of factors was also limited to four factors that determine customer preferences. Thus, there remains a research gap in exploring factors that attract and drive the commercialization of electric motorcycles in Indonesia.

Several researchers have previously conducted studies to identify the current state-of-the-art and

future research directions using bibliometric analysis [52], [53]. China has produced the highest number of publications on electric vehicles, with battery management systems, energy storage, and charging infrastructure being frequently discussed in studies over recent years [54], [55]. Other studies have focused on electric vehicle trends, policy implications, lithium-ion batteries, and battery management systems, emphasizing the need for synchronization of international electric vehicle policies, advancement in battery technology, and the promotion of research [56]. Studies on electric vehicle adoption have also highlighted customer behavior, highlighting that electric vehicle charging infrastructure and service facilities are key factors in the adoption of electric vehicles. Despite these contributions, there remains a gap in bibliometric analysis research focusing on the commercialization of electric vehicles. Therefore, one of the questions addressed in this paper is to identify the current state of the art and future research opportunities in the field of electric vehicle commercialization. This study aims to examine the development and research potential of electric motorcycles commercialization and to identify the pull and push factors that accelerate the commercialization of electric motorcycles in Indonesia.

2. Methods

This study employed an exploratory approach and conducted in-depth interviews with experts as part of comprehensive research on electric motorcycles. An exploratory study was conducted using bibliometric analysis software and a scoping literature review. Details are shown in Figure 3.

2.1. Identification of Potential Research

The identification of research potential was conducted using a bibliometric analysis approach, which aimed to assess the topic's potential at the time of study. This bibliometrics analysis utilized the biblioshiny R software version 4.3.1. A bibliometric analysis was conducted using the Scopus database, employing the search criteria outlined in Table 2.

2.2. Identification of Commercialization Factors

The study employed a literature review approach with a scoping review. This method was selected because it aligns with the research objective of mapping the literature within a specific topic area [57]. Scoping literature reviews can also be used to identify research gaps,

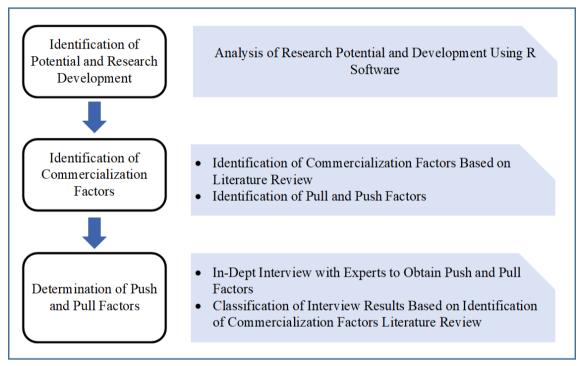


Figure 3. Research framework

Table 2. Scopus database search criteria and search results

	Article Grouping	Selected Documents
Title, article,	(TITLE-ABS-KEY ("Electric motorcycle" OR "Electric	756 Documents
abstract, keywords	motorcycle" OR "Electric motorcycles" OR "Electric	
	motorcycles" OR "electric motor vehicle" OR "electric motor	
	vehicles")	
	TITLE-ABS-KEY ("Electric motorcycle" OR "Electric	118 Documents
	motorcycle" OR "Electric motorcycles" OR "Electric	
	motorcycles" OR "electric motor vehicle" OR "electric motor	
	vehicles") AND TITLE-ABS-KEY (commercialization OR	
	commercialization OR commerce OR sales OR marketing OR	
	market)	
Document Type,	Journal and Conference Proceedings	106 Documents:
Stage Publication,	Final Stage	
Language	English	
Year	2015 – 2025	87 Documents

providing a comprehensive review of the limitations in the existing literature and enabling the exploration of complex and broad research topics [58]. In addition to serving as a foundation for designing a research agenda and developing research in a particular field, scoping literature reviews provides valuable insights for informed decision-making [59]. Therefore, a scoping literature review is particularly relevant to the electric limited research on vehicle commercialization, which lacks sufficient references, and it is consistent with the research objective of exploring the push and pull factors for commercialization the future of motorcycles.

The identification process was conducted using selected articles and research topics related to electric vehicles, electric motorcycles, and commercialization. Although the study focuses on the commercialization of electric motorcycles, this emphasis is due to the relatively limited research available in this area. In addition, the identification factors of commercialization were also examined through a literature review of studies on electric vehicles and other technology-based products. The results of this stage are expected to identify the driving factors for the commercialization of electric vehicles in general.

2.3. Determination of Pull and Push Factors

The expert approach in this study involved indepth interviews supported by a questionnaire. The interview was open-ended, allowing for discussion of both Pull and Push Factors that can accelerate the commercialization of electric motorcycles. The selection of experts was guided by the triple helix concept, which includes representatives from universities, industry, and government [60]. This concept aligns with the study's objectives, which are dynamic, comprehensive, and practical for the policy framework related to the commercialization of electric motorcycles. Given the limited number of expert sources in electric motorcycles research, which is still in its early stages of development in Indonesia, the number of experts involved was determined accordingly. However. background of the selected experts fulfilled the triple helix aspect, comprising professors and researchers of electric motorcycles at universities, researchers at government agencies and the

Ministry of Industry, and practitioners in the electric motorcycles industry in Indonesia. Validation of the interview results with the qualitative results was carried out by comparing the interview results with the findings of the literature review conducted [61].

The following pull and push factors were classified based on the commercialization factors identified in the previous stage. Each factor was then analyzed based on the data provided by the experts. In selecting the relevant factors, the expert emphasized those most frequently associated with commercialization. Those were subsequently categorized as Pull and Push Factors to be considered in accelerating the commercialization of electric motorcycles.

3. Results and Discussion

This section presents research findings, including the global development of research on the commercialization of electric motorcycles, the key factors influencing commercialization, the identification of pull and push factors for accelerating the commercialization of electric motorcycles, and the most dominant pull and push factors in accelerating the commercialization of electric motorcycles.

3.1. Identification of Research Potential

The results of the scientific production analysis indicate that the number of research articles with specified keywords increased approximately 23.11% from 2015 to 2025. These results present the factors contributing to the successful commercialization of motorcycles. Based on the thematic map in Figure 4, five thematic categories can be identified. Group 1, represented by the purple circle, is classified as a basic theme and includes topics such as commercialization, battery pack, lithium-ion battery, battery capacity, and the automotive industry. Groups 2 and 3 are positioned between the motor themes and the basic themes. Group 2, represented by the magenta circle, covers topics such as electric motorcycles, electric scooters, sales, purchase intention, and competition. Group 3, represented by the green circle, includes Indonesia, case studies, charging (batteries), charging infrastructures, and carbon emissions. Meanwhile, Group 4, represented by the orange circle, focuses specifically on motor-related

themes, including secondary batteries, fossil fuels, greenhouse gases, life cycle analysis, and global warming. Finally, Group 5, represented by the blue circle, falls between the motor themes and niche themes and includes electric vehicles, cycle transport, consumer behavior, economic analysis, and environmental economics. Its research potential is based on themes, as its level of development is low while its level of relevance is high.

The thematic evolution in Figure 5 illustrates studies on topics related to electric motorcycles. Since 2023, research has expanded into several new areas, including electric motorcycles, commercialization, carbon emissions, economic and social effects, competition, battery, and internal combustion engines. Research on commercialization has partly evolved from the topics of charging (batteries), battery packs, and

electric motorcycles. Similarly, research on electric motorcycles has evolved into two primary topics: electric motorcycles and commercialization. Other emerging issues include carbon emissions, economic and social effects, competition, and internal combustion engines.

The cluster analysis in Table 3 identifies 4 clusters. Cluster 1 includes: electric motorcycles, Indonesia, electric scooters, sales, charging (batteries), charging infrastructures, internal combustion engines, purchase intention, competition, energy efficiency, battery, charging stations, economic and social effects, adoption intention). Cluster 2 includes: electric vehicles, cycle transport, life cycle analysis, Taiwan, consumption behavior. financial analysis, environmental economics. sustainability, willingness to pay). Cluster 3 involves: battery pack, commercialization, lithium-ion battery,

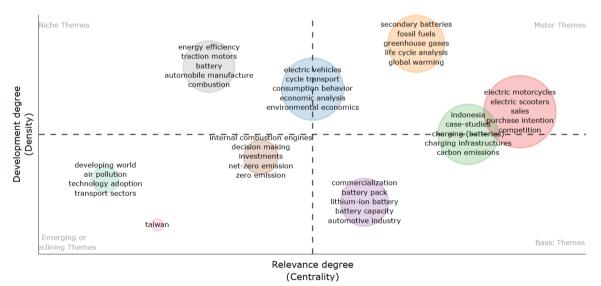


Figure 4. Thematic map (Source: R.4.3.1 Software)

Figure 5. Thematic evolution (Source: R.4.3.1 Software)

	,		<i>'</i>
Cluster 1	Cluster 2	Cluster 3	Cluster 4
Electric Motorcycles	Electric Vehicles	Battery Pack	Secondary Batteries
Indonesia	Cycle Transport	Commercialization	Fossil Fuels
Electric Scooters	Life Cycle Analysis	Lithium-Ion Battery	Greenhouse Gases
Sales	Taiwan	Global Warming	Sustainable Development
Charging (Batteries)	Consumption Behavior	Traction Motors	Charging Time
Charging Infrastructures	Economic Analysis	Battery Capacity	Costs
Internal Combustion Engines	Environmental Economics	Modeling	Gas Emissions
Purchase Intention	Sustainability	-	-
Competition	Willingness To Pay	-	-
Energy Efficiency	-	-	-
Battery	-	-	-
Charging Stations	-	-	-
Economic And Social Effects	-	-	-
Adoption Intention	-	-	-

Table 3. Co-occurrence network (Source: R.4.3.1 Software)

global warming, traction motors, battery capacity, modeling). Meanwhile, Cluster 4 comprises: secondary batteries, fossil fuels, greenhouse gases, sustainable development, charging time, costs, gas emissions. Research on commercialization has partly evolved from the topics of charging (batteries), battery packs, and electric motorcycles.

The results of the clustering analysis revealed several keywords related to research on the commercialization of electric motorcycles outside of the keywords used in the search, namely charging (batteries), charging infrastructure, charging station, purchase intention, energy efficiency, consumption behavior, cycle transport, willingness to pay, sustainability, lithium-ion battery, global warming, charging time, cost, gas emissions, and other keywords. These keywords have the potential to be considered investigating factors that can accelerate the commercialization of electric motorcycles. Through a more in-depth literature review, these factors can be further classified as pull and push factors to accelerate the commercialization of electric motorcycles.

3.2. Identification of Commercialization Factor

Based on a literature review commercialization factors for electric vehicles, electric motorcycles, and several products utilizing similar technology, 27 journal articles and international proceedings indexed by Scopus were identified. These studies encompass 17 factors related to electric vehicle and product commercialization. The results of the factors determining commercialization and electric vehicles are presented in Table 4.

Furthermore, these factors can be taken into consideration in determining the commercialization of electric motorcycles in Indonesia. In more detail, these factors are explained in Table 5.

The next step was identifying the influential factors in commercialization. This step was investigated deeper, involving experts from academia, practitioners, and government who had experiences in the field of automotive technology, particularly electric vehicles.

3.3. Pull and Push Factor Identification

This stage involved experts from various backgrounds, including practitioners industry, academics from universities, researchers, and government officials. Several criteria were set to determine the expert's eligibility, including relevant expertise and work experience, while ensuring compliance with the triple helix aspects. The selected experts possessed a minimum of five years of work experience, held a minimum position of manager or equivalent, demonstrated knowledge of factors influencing the success of electric motorcycle commercialization in Indonesia, and were familiar with electric motorcycle development policies in Indonesia including the selection of effective policy strategies and priorities. A total of 11 experts participated in the study, with a proportional distribution of expert backgrounds, as detailed in Table 6.

The approach involving experts includes interviews and open-ended questionnaires to identify commercialization factors for electric motorcycles, which are categorized into Pull and

Table 4. Identification of factors or success factors in the commercialization of electric products and vehicles

	Commercialization																
Refs.	Price	Production Cost	Marketing Strategy	Business Partners	Environment / Health	Social	Regulation	Incentive	Development Products / Innovations	Technology	Mileage	Time	Speed	Quality	Ergonomics	Distribution	Infrastructure
Huang et al. [14]	$\sqrt{}$	-	-	-	-	-	-	$\sqrt{}$	-	-	-	-	-	-	-	-	-
Luansing et al. [62]	1	-	-	√	-	-	√	-	-	-	-	-	-	-	-	√	-
Istiqomah et al. [63]	$\sqrt{}$	-	-	-	-	-	√	-	-	-	-	-	-	-	-	-	$\sqrt{}$
Setiawan et al. [37]	-		-	-	√	-		$\sqrt{}$	-	-	-	-	-		-	-	
Maghfiroh et al. [38]	-	-	-	-	-	-	-	$\sqrt{}$	-		-	-	-	-	-	-	-
Mastoi et al. [34]	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Veza et al. [36]	-	-	-	-	-	-	√	-	-	√	-	-	-	-	-	-	√
Sanguesa et al. [64]	-	-	-	-	-	-		-	-	√	-	-	-	-	-	-	-
Ruan <i>et al</i> . [42]	-	-	√	-	-	-	√	-	-	-	-	-	-	-	-	-	-
Stenroos and Sandberg [43]	-	-	V	√	-	-	-	-	-	-	-	-	-	-	-	V	-
Yuniaristanto et al. [65]	-	-	√	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Muda et al. [44]	-	-	-	√	-	-	√		-	-	-	-	-	-	-	-	-
Habibie and Sutopo [39]	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
Ramesan et al. [41]	-	-	-	-	√	-	√	-	-	√	-	-	-	-	-	-	-
Martinez-Lao et al. [49]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Osório et al. [50]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\sqrt{}$
Oryani et al. [66]		-	-	-	√	-	-	-	-	-	-	-	-	$\sqrt{}$	-	-	-
Lim [67]	-	-	√	√	√	-	-	-	√	-	-	-	-	-	-	-	-
Habibie et al. [40]	-		-	-	√	\checkmark	-	-	-		-	-	-	-	-	-	-
Ismail et al. [68]	-	-	√	√	√	-	-	-	√	-	-	-	-	-	-	-	-
Srikandi et al. [69]		-	-	-	√	-	-	-	-	-	-	-	-	$\sqrt{}$	-	-	-
Chu et al. [70]	-	√	-	-	√	-	-	-	√	√	-	-	-	-	-	-	√
Yang et al. [71]	-	-	-	-	-	-	-	-	√	-	-	-	-	-	-	-	-
Soetopo [47]	-	-	-	-	-	-	-	-	V	-	-	-	-	-	-	-	-
Cho and Lee [72]	-	-	√	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Ziegler and Abdelkafi [73]		-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Guerra [45]	√	-	-	-	-	-	-	-	-	-				$\sqrt{}$	$\sqrt{}$	-	-

Table 5. Description of each factor

Description.
Description
Comparison of electric vehicle prices with conventional vehicles [14]
Costs allocated for maintenance, manufacturing, operations, and production expenses for
other steadfast and loyal customers [37]
Strategies for selling electric vehicles, including promotion, expanding market share, and
increasing customer satisfaction [67]
Building partnerships with local government and businesses [44]
Pollution from vehicles emissions which impacts environmental cleanliness and health [41]
Factors related to society and characteristics of community or lifestyle [40]
Regulation on tax incentives from the government [37]
Incentives for the industry, automotive, and customers to encourage the acceleration and
adoption of electric vehicle [14], [37], [38]
Innovation of a suitable product that align with the customer expectations [71]
Readiness to adopt the latest technology [41]
The distance that can be covered by a vehicle [37]
The time required to charge an EV battery [45]
Vehicle performance on terms of speed over distance [45]
Quality of vehicle electricity [37]
Safety issues from electric vehicles [45]
Distribution channels for fulfilling the customer needs [43]
Infrastructure readiness of charging infrastructure at various location [37]

Table 6. Profile expert respondent

Expert	Profile	Institution
1	Professor and Researcher	State University, Ex. Head of EV Research Center
2	Academic, and Practitioner (Owner)	State University, Private Company
3	Academic and Researcher	Private University
4	Senior Researcher	National Research and Innovation Agency
5	Ministry of Industry	Government
6	Ministry of Industry	Government
7	General Manager	Automotive Company
8	Director	Electric Motorcycle Conversion Company
9	Manager	Battery Technology Company
10	Marketing	EV Battery Manufacturer
11	General Company	Electric Vehicle Company

Push Factors. These factors are illustrated in Figure 6 and Figure 7. Regarding the pull factors for electric motorcycle commercialization, as shown in Figure 6, several new findings were identified through the perspectives of experts from academia, government, and business actors. Experts emphasized that, in the case of electric motorcycles, consumers should be able to cover the purchase price or associated costs through installment systems.

One identified factor relates to higher operational and maintenance costs, which, nevertheless, can result in greater long-term savings. In the speed category, torque and maximum speed should be considered as important factors for electric motorcycles. In the design category, ergonomics should be a factor in security products and convenience operations. In this category, the battery is expected to be a highcapacity battery. Regarding the travel distance, convenience in battery charging should be prioritized, including the availability of charging stations equipped with various types of sockets, as well as systems that allow battery swapping or exchange, thus it can eliminate the need to wait for charging. Additionally, the use of durable batteries with a lifespan of approximately five years should also be considered.

Regarding the push factors in commercialization, as illustrated in Figure 7, several new factors were identified based on confirmation from experts representing academia, government, and business actors. Experts added that electric motorcycles should be prominently advertising within featured in commercialization market category. Another important factor is consumer and public education, which is essential to raise awareness that electric motorcycles represent a viable alternative to conventional motorcycles. In addition, transportation was identified as a critical factor, encompassing both public and private sectors. The development of an electric vehicle ecosystem by the government should therefore begin with the integration of electric motorcycles into public transportation services, followed by adoption in private transportation.

In the category of regulation or policy, there are incentives factor consisting of various types of incentives. Experts argue that, in addition to incentives for consumers, factors such as incentives for the company, tax reductions for Public Electric Vehicle Charging Stations (EV charging station or SPKLU), minimum consumer tax, and minimum corporate tax also support the commercialization of electric motorcycles. The Local Content Requirement (LCR or TKDN) factor, previously set at 60%, has been replaced with standard minimum investment restrictions, which can significantly impact the commercialization of success of motorcycles.

In regard to the category of consumer awareness, education within communities is crucial to emphasize that electric vehicles are superior to conventional vehicles and that accessibility is an important factor. This awareness strongly determines the success of electric motorcycle commercialization. In the social and cultural category, experts note that existing communities also influence usage trends in electric motorcycles and shape public perceptions. Finally, in the infrastructure category, experts highlight that EV charging stations provide numerous services in one place. The availability of battery swapping systems and

standardized chargers increases consumer interest in electric motorcycles, as they enable convenient and accessible power refilling.

According to experts, in addition to offering multiple services, EV charging stations should also ensure the availability of a reliable electricity supply. In the distribution management category, dealers, workshops, services, finished sales, and warranties are available to determine the success of commercializing electric motorcycles.

3.4. Pull and Push Factors

In this stage, the factors identified previously were quantified based on the results of the expert interviews. The criteria and profiles of the experts are presented in **Table 5**. Each expert participated

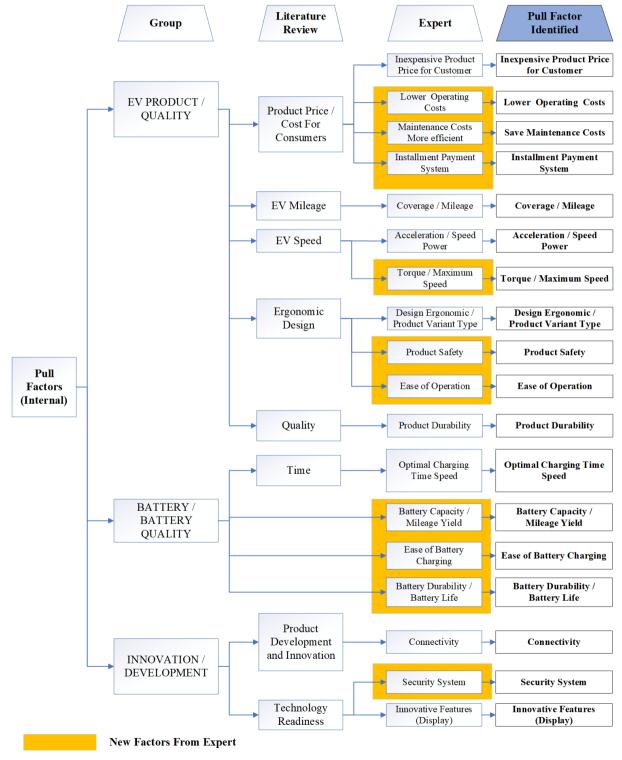


Figure 6. Pull factors

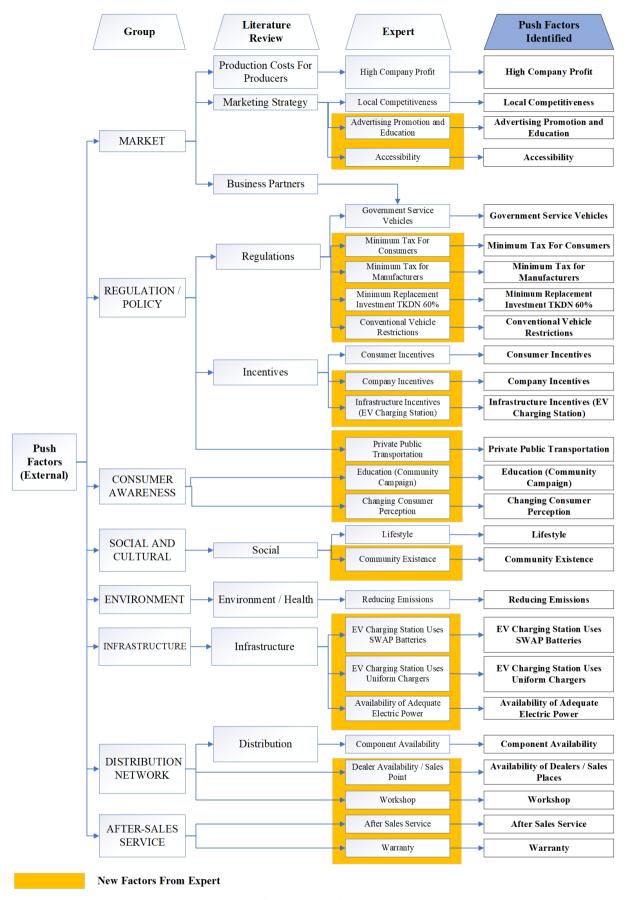


Figure 7. Push factors

in an in-depth interview lasting approximately one to two hours, using open-ended questions to obtain comprehensive insights. The interviews yielded qualitative data that were subsequently categorized into commercialization factors: pull and push factors. The push and pull factors listed in Table 7 were selected based on their frequency of mention by at least two experts. The percentage of each factor was calculated based on the number of experts mentioning the factor relative to the total number of experts involved in the study.

3.5. Discussion

Based on the thematic map analysis, research on commercialization is more often conducted alongside studies on battery. This research field remains relatively underdeveloped but has a high level of relevance. These results suggest that commercialization remains a relevant topic and requires further exploration. In contrast, research electric motorcycles has advanced significantly, with a higher level of relevance compared to commercialization. This topic is situated in the same research group as sales, purchase intention, and electric scooters. These results highlight that research on electric motorcycles remains highly relevant for further development, presenting an opportunity for further research on commercialization, which occupies a distinct category.

The results of the thematic evolution analysis indicate that commercialization and electric motorcycles remain relevant, as new topics continue to emerge. Commercialization topic is more often associated with research on electric vehicle batteries than with electric motorcycles as the final product. Meanwhile, the clustering analysis results based on the co-occurrence network clarify the grouping or clustering results of the topics, showing that electric motorcycles topic still has potential for exploration in conjunction with commercialization, as it falls into a different research cluster. This result reinforces the novelty of research on the commercialization of electric motorcycles. The clustering results also reveal several keywords that may represent critical factors in commercialization of electric motorcycles and merit further investigation. These include charging (batteries), charging infrastructure, charging station, purchase intention, energy efficiency, consumption behavior, cycle transport, lithium-ion battery, global warming, charging time, cost, emissions, and other related terms.

Table 7. Expert opinion on driving factors and pull factors for the commercialization of electric motorcycles

	Factors Identified				Total									
	Factors Identified	1	2	3	4	5	6	7	8	9	10	11	Experts	%
	Inexpensive Product Price for	0	0	0	0	-	0	0	0	0	0	0	10	90.91%
	Customer													
Pull	Lower Operating Costs	-	-	-	-	0	-	-	-	0	-	0	3	27.27%
ruii	Design Ergonomic / Product	-	0	-	0	-	-	-	0	-	-	-	3	27.27%
	Variant Type													
	Optimal Speed Charging Time	-	-	-	0	-	-	-	-	0	-	-	2	18.18%
	High Company Profit	0	0	0	-	-	-	-	-	-	-	-	3	27.27%
	Government Service Vehicles	0	0	0	-	-	-	-	-	-	-	-	3	27.27%
	Private Public Transportation	0	0	-	-	-	-	-	-	-	-	0	3	27.27%
	Consumer Incentives	0	0	0	-	0	0	-	0	-	0	0	8	72.73%
	Company Incentives	0	0	0	-	-	-	-	0	-	-	0	5	45.45%
	Infrastructure Incentives (EV	-	-	0	0	-	-	-	-	-	-	-	2	18.18%
	Charging Station)													
Push	Minimum Tax for Consumers	0	0	0	0	0	0	0	-	-	-	-	7	63.64%
1 usii	Minimum Tax for Manufacturers	-	-	0	-	-	-	-	0	-	-	-	2	18.18%
	Minimum Replacement	-	-	0	0	-	-	-	-	-	-	-	2	18.18%
	Investment Local Content													
	Requirement (LCR) 60%													
	Reducing Emissions	-	-	-	-	-	-	-	0	-	0	0	3	27.27%
	EV Charging Station Uses Uniform	-	-	0	-	0	0	-	-	0	0	-	5	45.45%
	Chargers													
	After Sales Service	0	-	-	0	-	-	-	-	-	-	-	2	18.18%

Based on the identification of commercialization factors obtained from the literature review analysis, 17 factors were identifies across 40 articles: price [14], production cost [63], marketing strategy [67], business partners [44], environment and health [44], social [40], regulation [38], incentive [14], development products and innovations [71], technology readiness [36], mileage [37], time [45], quality [66], distribution ergonomics [45], [62], infrastructure [39]. According to Guerra [45], consumer willingness to adopt electric vehicles is influenced by several factors, including price, speed, power, range, charging time, quality, and is very important in determining preferences and potential demand for adopting electric vehicles. Similarly, Veza et al. [36] highlights that the opportunities and challenges of electric vehicles in Indonesia and Malaysia are influenced by several factors, including: the distribution of components, workplace safety issues, efficiency, comfort, accessibility, and policies.

Based on the expert results, the factors obtained from the literature review can be categorized into Pull Factors and Push Factors. Pull factors refer to internal or attractive elements that accelerate the commercialization of electric motorcycles. In contrast, the push factor is an external factor that accelerates the commercialization of electric motorcycles.

Following the interviews and questionnaires, several additional pull and push factors were push factors identified. The commercialization of electric motorcycles include not only their affordable price but also several additional advantages, such as low operating low maintenance costs, installment payment options, strong torque and high speed, product safety, and ease of use when operating the motorcycle. There are new factors in battery category, namely battery capacity or maximum battery mileage, ease of charging, and the ability to maintain a relatively long battery life.

Pull factors that can be considered in the policy framework for the commercialization of electric motorcycles include market-related aspects such as the high selling price set by companies. Additionally, new factors such as advertising for education and private public transportation (online motorcycle taxis) are also worth considering. Within the category of regulations or

policies, in addition to consumer incentive factors or sales incentives, there are new factors, namely company incentives, incentives for EV charging station (public electric vehicle charging station), minimum taxes for consumers, minimum taxes for producers, Local Content Requirement (LCR) which is 60% replaced by Company investment, restrictions on conventional vehicles, community education or campaigns on the benefits of using electric motorcycles, and easy accessibility for electric motorcycle users.

In social and cultural categories, in addition to lifestyle, new factors include the existence of communities and perceptions that change the community's mindset. For infrastructure, in addition to EV charging stations, there are several new considerations including the use of SWAP batteries, uniform chargers, adequate electricity availability, and the availability of dealers or retail outlets. Furthermore, within SCM or distribution networks, there are new factors in addition to the availability of components, namely dealers, workshops, services, finished sales, warranties on electric motorcycles.

Of the 44 factors identified, more than one expert highlighted four pull factors and twelve push factors. Among the pull factors, ten experts (more than 90% of the experts) identified the inexpensive product price as a key benefit for customers. This factor is the most dominant and is a pull in accelerating the commercialization of electric motorcycles. These results align with research on the influence of subsidy policies on motorcycle market share, electric which demonstrated that purchasing subsidies and electricity subsidies can significantly influence electric motorcycle adoption [51]. This study also demonstrated that infrastructure and incentives influence policies that support the adoption of electric motorcycles. Other research on electric vehicle adoption and production also suggests that price subsidies and incentives play a role in supporting the electric vehicle ecosystem [74]. Meanwhile, more than 45% of the experts four push factors: mentioned consumer incentives, corporate incentives, minimum taxes for consumers, and EV charging stations that implement standardized fees. Incentives emerged as the factor most often mentioned by experts as a driver of accelerating the electric motorcycles commercialization. This factor indicates that when designing policies to accelerate the commercialization of electric motorcycles, this factor should be considered by stakeholders.

Previous research has demonstrated a relationship between push and pull factors in the commercialization of electric vehicles. Providing incentives to the automotive and related industries can accelerate EV product innovation. Moreover, tax incentives may serve as an alternative mechanism to attract investors, increase capital, and lower production costs. Therefore. further research on the interrelationships among these factors in designing policies to accelerate commercialization is highly recommended.

4. Conclusion

Research on commercialization and electric vehicles has increased significantly over the last decade. Results from bibliometric analysis using software indicate that research commercialization of electric vehicles promising area to explore in more depth. Based on the author's country of origin, few researchers in Indonesia have investigated commercialization of electric motorcycles, despite the considerable market potential and country's large population. The results of the clustering analysis with bibliometrics reveal opportunities to integrate several potential research topics for development, including cluster 1 (electric motorcycles) and cluster 3 (commercialization). analysis Keyword reveals several terms frequently discussed in the context commercialization and electric vehicles, including costs, investment, sales, competition, policies, infrastructure, and demand.

Meanwhile, the results of the SLR analysis identify 17 key factors in the commercialization of electric vehicles, which can serve as a reference for electric motorcycles. However, to identify and validate these factors, further research is needed by involving experts in the commercialization and electric motorcycle industry, including entrepreneurs, industry players, manufacturers, policymakers, and stakeholders with diverse interests. According to the literature review, 17 factors have been identified as contributing to the successful commercialization of electric motorcycles. Building on these findings, the researcher conducted interviews and administered an open questionnaire regarding the success factors influencing commercialization of electric motorcycles. From this process, an additional 44 factors were identified by the experts, which were categorized into pull factors push factors to accelerate commercialization of electric motorcycles. Based on the observations from 11 experts, four pull factors were obtained, and more than one expert mentioned 12 push factors. Among these, inexpensive product price for customers is the most dominant factor in accelerating commercialization of electric motorcycles. Meanwhile, the provision of incentives is the most frequently cited by experts as it drives the acceleration electric motorcycle commercialization.

Research on electric motorcycles has been increasing, particularly in developing countries. However, the topic of commercialization requires further development to encourage the growth of electric motorcycle sales globally. The results of research on these pull and push factors are the basis for designing commercialization policies. Further research is still needed to process these factors into a policy. Additional research on electric motorcycle commercialization policies can be developed using various methods, such as dynamic systems decision-making and techniques.

Acknowledgements

We gratefully acknowledge the financial support provided by the Indonesian Education Scholarship (BPI, Grant ID:202209091927), through the Center for Higher Education Funding and Assessment (PPAPT) of the Ministry of Higher Education, Science, and Technology, Indonesia; and by Indonesian Endowment Fund for Education (LPDP).

Author's Declaration

Authors' contributions and responsibilities

The authors made substantial contributions to the conception and design of the study. The authors took responsibility for data analysis, interpretation and discussion of results. The authors read and approved the final manuscript.

Funding

This research was financially supported by the Indonesian Education Scholarship (Beasiswa Pendidikan Indonesia – BPI), through the Center for Higher Education Funding and

Assessment (PPAPT) of the Ministry of Higher Education, Science, and Technology, Indonesia, and by the Indonesian Endowment Fund for Education (LPDP). Grant ID: BPI No. 202209091927.

Availability of data and materials

All data are available from the authors.

Competing interests

The authors declare no competing interest.

Additional information

No additional information from the authors.

References

- [1] I. Mahmud, M. B. Medha, and M. Hasanuzzaman, "Global challenges of electric vehicle charging systems and its future prospects: A review," Research in Transportation Business & Management, vol. 49, p. 101011, Aug. 2023, doi: 10.1016/j.rtbm.2023.101011.
- [2] R. Kashyap and S. Rastogi, "The Need and Urgency of Electric Vehicles or EVs in World today," *Research Review International Journal of Multidisciplinary*, vol. 6, no. 3, Mar. 2021, doi: 10.31305/rrijm.2021.v06.i03.002.
- [3] W. Li, M. Yang, and S. Sandu, "Electric vehicles in China: A review of current policies," *Energy & Environment*, vol. 29, no. 8, pp. 1512–1524, Dec. 2018, doi: 10.1177/0958305X18781898.
- [4] G. D. Suprobowati and S. Y. Kalpikajati, "The Urgency of Using Electric Vehicles and Creating an Adequate Legal Ecosystem," in *Proceedings of the 2nd International Conference on Education and Technology (ICETECH 2021)*, 2021. doi: 10.2991/assehr.k.211221.010.
- [5] Z. Li, A. Khajepour, and J. Song, "A comprehensive review of the key technologies for pure electric vehicles," *Energy*, vol. 182, pp. 824–839, Sep. 2019, doi: 10.1016/j.energy.2019.06.077.
- [6] N. Lutsey, P. Slowik, and Lingzhi Jin, "Sustaining electric vehicle market growth in U.S. cities," 2016.
- [7] S. Q. A. Bastos, F. Gama, T. de Paula Assis, and M. Milosz, "Is there a relationship between the use of motorcycles and the level of development of countries?," *Bulletin of Geography. Socio-economic Series*, vol. 50, no. 50, pp. 43–53, Dec. 2020, doi: 10.2478/bog-

- 2020-0031.
- [8] R. Gunawan, D. Walla, and R. Tanamas, "The development of motorcycle industry in Indonesia," in *International Pacific Conference on Automotive Engineering, Melbourne, Australia*, 1987.
- [9] P. Starkey, "The benefits and challenges of increasing motorcycle use for rural access", in International Conference on Transport and Road Research," in *International Conference on Transportation and Road Research*, 2016, pp. 16– 18.
- [10] Yuniaristanto, W. Sutopo, M. Hisjam, and H. Wicaksono, "Estimating the market share of electric motorcycles: A system dynamics approach with the policy mix and sustainable life cycle costs," *Energy Policy*, vol. 195, p. 114345, Dec. 2024, doi: 10.1016/j.enpol.2024.114345.
- [11] N. Rietmann, B. Hügler, and T. Lieven, "Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions," *Journal of Cleaner Production*, vol. 261, p. 121038, Jul. 2020, doi: 10.1016/j.jclepro.2020.121038.
- [12] M. Wu and W. Chen, "Forecast of Electric Vehicle Sales in the World and China Based on PCA-GRNN," *Sustainability*, vol. 14, no. 4, p. 2206, Feb. 2022, doi: 10.3390/su14042206.
- [13] U. Khasanah, "7 Negara dengan Populasi Motor Terbanyak di Dunia," IDN Times. Accessed: May 20, 2025. [Online]. Available: https://www.idntimes.com/automotive/mot orbike/negara-dengan-populasi-motor-terbanyak-di-dunia-00-vs37w-xtsn27
- [14] S. K. Huang, L. Kuo, and K.-L. Chou, "The impacts of government policies on green utilization diffusion and social benefits A case study of electric motorcycles in Taiwan," *Energy Policy*, vol. 119, pp. 473–486, Aug. 2018, doi: 10.1016/j.enpol.2018.04.061.
- [15] Y. Zhou, M. Wang, H. Hao, L. Johnson, H. Wang, and H. Hao, "Plug-in electric vehicle market penetration and incentives: a global review," *Mitigation and Adaptation Strategies for Global Change*, vol. 20, no. 5, pp. 777–795, Jun. 2015, doi: 10.1007/s11027-014-9611-2.
- [16] I. C. Setiawan, "Policy Simulation of Electricity-Based Vehicle Utilization in

- Indonesia (Electrified Vehicle HEV, PHEV, BEV and FCEV)," *Automotive Experiences*, vol. 2, no. 1, pp. 1–8, 2019, doi: 10.31603/AE.V2I1.2020.
- [17] F. Alanazi, "Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation," *Applied Sciences*, vol. 13, no. 10, p. 6016, May 2023, doi: 10.3390/app13106016.
- [18] W. Wen, S. Yang, P. Zhou, and S. Z. Gao, "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," *Renewable and Sustainable Energy Reviews*, vol. 144, p. 111024, Jul. 2021, doi: 10.1016/j.rser.2021.111024.
- [19] H. Köten, "Alternative Way to Electric Vehicle Battery Technologies as Sustainable Hydrogen Production System without Storage Vessel for Hydrogen Motors and Engine Test," *Automotive Experiences*, vol. 8, no. 1, pp. 146–158, Apr. 2025, doi: 10.31603/ae.13209.
- [20] M. Faizal, S. Y. Feng, M. F. Zureel, B. E. Sinidol, D. Wong, and G. K. Jian, "A Review on Challenges and Opportunities of Electric Vehicles (EVS)," *Journal of Mechanical Engineering Research & Developments*, vol. 42, no. 4, pp. 130–137, Jun. 2019, doi: 10.26480/jmerd.04.2019.130.137.
- [21] T. Muneer, M. L. Kolhe, and A. Doyle, *Electric Vehicles: Prospects and Challenges*. Elsevier, 2017. doi: 10.1016/C2014-0-04033-6.
- [22] H. Roy *et al.*, "Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review," *Sustainability* (*Switzerland*), vol. 14, no. 24, 2022, doi: 10.3390/su142416684.
- [23] F. Meszaros, M. Shatanawi, and G. A. Ogunkunbi, "Challenges of the Electric Vehicle Markets in Emerging Economies," *Periodica Polytechnica Transportation Engineering*, vol. 49, no. 1, pp. 93–101, Feb. 2020, doi: 10.3311/PPtr.14037.
- [24] M. R. Anshori, M. S. Boedoyo, and G. E. Saputro, "Development of Electric Vehicle Charging Infrastructure in Indonesia to Achieve the Target of Nationally Determined Contribution by 2030," *Jurnal Ecoment Global*, vol. 9, no. 1, pp. 1–10, Apr. 2024, doi:

- 10.36982/jeg.v9i1.3965.
- [25] A. C. Adi, "Ini Target Pemerintah untuk Populasi Kendaraan Listrik di Tahun 2030," Ministry of Energy and Mineral Resources of Indonesia. Accessed: Oct. 15, 2024. [Online]. Available: https://www.esdm.go.id/id/mediacenter/arsip-berita/ini-target-pemerintahuntuk-populasi-kendaraan-listrik-di-tahun-2030
- [26] MCD Team, "Global Electric 2-Wheeler Industry Increased 7.2% in First Half 2025," Motor Cycles Data. Accessed: Jun. 25, 2025. [Online]. Available: https://www.motorcyclesdata.com/2025/08/0 5/electric-motorcycles-market/
- [27] A. H. Pandyaswargo and M. F. N. Maghfiroh, "The readiness of electric vehicle in Indonesia based on the perceptions of key stakeholders," in *AIP Conference Proceedings*, 2023, p. 050071. doi: 10.1063/5.0113791.
- [28] R. Hidayat and J. Cowie, "A framework to explore policy to support the adoption of electric vehicles in developing nations: A case study of Indonesia," *Transportation Research Procedia*, vol. 70, pp. 364–371, 2023, doi: 10.1016/j.trpro.2023.11.041.
- [29] D. Waluyo, "100 Ribu Kendaraan Listrik Baru Diprediksi Akan Mengaspal di Indonesia pada 2025," katadata.co.id. Accessed: Jun. 05, 2025. [Online]. Available: https://katadata.co.id/ekonomi-hijau/energibaru/6809ccd24faf8/100-ribu-kendaraan-listrik-baru-diprediksi-akan-mengaspal-di-indonesia-pada-2025
- [30] C. S. Candra, "Evaluation of Barriers to Electric Vehicle Adoption in Indonesia through Grey Ordinal Priority Approach," *International Journal of Grey Systems*, vol. 2, no. 1, pp. 38–56, Jul. 2022, doi: 10.52812/ijgs.46.
- [31] E. W. Adji, "SPKLU Mobil Listrik Di Seluruh Indonesia Sudah Ada 3.772 Unit, Dari Pulau Jawa Hingga Kalimantan," Oto Driver. Accessed: Jun. 05, 2025. [Online]. Available: https://otodriver.com/berita/2025/spklumobil-listrik-di-seluruh-indonesia-sudahada-3772-unit-dari-pulau-jawa-hinggakalimantan-spkebibjtan
- [32] D. Guler and T. Yomralioglu, "Suitable location selection for the electric vehicle fast

- charging station with AHP and fuzzy AHP methods using GIS," *Annals of GIS*, vol. 26, no. 2, pp. 169–189, Apr. 2020, doi: 10.1080/19475683.2020.1737226.
- [33] J. Kumar K, S. Kumar, and N. V.S, "Standards for electric vehicle charging stations in India: A review," *Energy Storage*, vol. 4, no. 1, Feb. 2022, doi: 10.1002/est2.261.
- [34] M. S. Mastoi *et al.*, "An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends," *Energy Reports*, vol. 8, pp. 11504–11529, 2022, doi: 10.1016/j.egyr.2022.09.011.
- [35] A. Ismail, "Hyundai Investment On Electric Vehicles In Indonesia," *Intermestic: Journal of International Studies*, vol. 5, no. 2, p. 375, May 2021, doi: 10.24198/intermestic/v5n2.11.
- [36] I. Veza *et al.*, "Electric Vehicles in Malaysia and Indonesia: Opportunities and Challenges," *Energies*, vol. 15, no. 7, p. 2564, Apr. 2022, doi: 10.3390/en15072564.
- [37] A. D. Setiawan, T. N. Zahari, F. J. Purba, A. O. Moeis, and A. Hidayatno, "Investigating policies on increasing the adoption of electric vehicles in Indonesia," *Journal of Cleaner Production*, vol. 380, p. 135097, Dec. 2022, doi: 10.1016/j.jclepro.2022.135097.
- [38] M. F. N. Maghfiroh, A. H. Pandyaswargo, and H. Onoda, "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, vol. 13, no. 23, p. 13177, Nov. 2021, doi: 10.3390/su132313177.
- [39] A. Habibie and W. Sutopo, "A Literature Review: Commercialization Study of Electric Motorcycle Conversion in Indonesia," *IOP Conference Series: Materials Science and Engineering*, vol. 943, no. 1, p. 012048, Oct. 2020, doi: 10.1088/1757-899X/943/1/012048.
- [40] A. Habibie, M. Hisjam, W. Sutopo, and M. Nizam, "Sustainability Evaluation of Internal Combustion Engine Motorcycle to Electric Motorcycle Conversion," *Evergreen*, vol. 8, no. 2, pp. 469–476, Jun. 2021, doi: 10.5109/4480731.
- [41] S. Ramesan, P. Kumar, and S. K. Garg, "Analyzing the enablers to overcome the challenges in the adoption of electric vehicles

- in Delhi NCR," Case Studies on Transport Policy, vol. 10, no. 3, pp. 1640–1650, Sep. 2022, doi: 10.1016/j.cstp.2022.06.003.
- [42] Y. Ruan, C. C. Hang, and Y. M. Wang, "Government's role in disruptive innovation and industry emergence: The case of the electric bike in China," *Technovation*, vol. 34, no. 12, pp. 785–796, Dec. 2014, doi: 10.1016/j.technovation.2014.09.003.
- [43] L. Aarikka-Stenroos and B. Sandberg, "From new-product development to commercialization through networks," *Journal of Business Research*, vol. 65, no. 2, pp. 198–206, Feb. 2012, doi: 10.1016/j.jbusres.2011.05.023.
- [44] S. Muda, M. Zulkifli Mokhtar, W. A. Aziz, M. Amin, A. Sofian, and A. Halim, "Developing Determinant Factors for Product Commercialization and Innovation in Malaysia," *International Journal of Innovation, Creativity and Change*, vol. 15, no. 9, pp. 560–576, 2021, [Online]. Available: www.ijicc.net
- [45] E. Guerra, "Electric vehicles, air pollution, and the motorcycle city: A stated preference survey of consumers' willingness to adopt electric motorcycles in Solo, Indonesia," *Transportation Research Part D: Transport and Environment*, vol. 68, pp. 52–64, Mar. 2019, doi: 10.1016/j.trd.2017.07.027.
- [46] T. Mo *et al.*, "Commercialization of Electric Vehicles in Hong Kong," *Energies*, vol. 15, no. 3, p. 942, Jan. 2022, doi: 10.3390/en15030942.
- [47] W. Sutopo, "The Roles of Industrial Engineering Education for Promoting Innovations and Technology Commercialization in the Digital Era," IOP Conference Series: Materials Science and Engineering, vol. 495, p. 012001, Jun. 2019, doi: 10.1088/1757-899X/495/1/012001.
- [48] N. S. A. Latif, A. Abdullah, and N. M. Jan, "A Pilot Study of Entrepreneurial Orientation towards Commercialization of University Research Products," *Procedia Economics and Finance*, vol. 37, pp. 93–99, 2016, doi: 10.1016/S2212-5671(16)30098-3.
- [49] J. Martínez-Lao, F. G. Montoya, M. G. Montoya, and F. Manzano-Agugliaro, "Electric vehicles in Spain: An overview of charging systems," *Renewable and Sustainable Energy Reviews*, vol. 77, pp. 970–983, Sep.

- 2017, doi: 10.1016/j.rser.2016.11.239.
- [50] G. J. Osório *et al.*, "Rooftop photovoltaic parking lots to support electric vehicles charging: A comprehensive survey," *International Journal of Electrical Power & Energy Systems*, vol. 133, p. 107274, Dec. 2021, doi: 10.1016/j.ijepes.2021.107274.
- [51] R. Z. Raung, W. Sutopo, M. Hisjam, and D. Hartono, "Scenario analysis of subsidy policies on electric motorcycle market in system Indonesia using dynamics simulation," **Transportation** Research Interdisciplinary Perspectives, vol. 32, Jul. 2025. doi: 101487, 10.1016/j.trip.2025.101487.
- [52] A. S. M. Al-Obaidi, D. F. Al Husaeni, M. Setiyo, and A. B. D. Nandiyanto, "The role of mechanical engineering in industry: Review and bibliometric analysis," *Mechanical Engineering for Society and Industry*, vol. 4, no. 3, pp. 308–317, Dec. 2024, doi: 10.31603/mesi.12619.
- [53] Y. D. Herlambang *et al.*, "Trends, Advances, and Future Directions in Fuel Cell Electric Vehicle Performance: A Bibliometric Analysis Using the PAGER Framework," *Automotive Experiences*, vol. 8, no. 1, pp. 72–97, Apr. 2025, doi: 10.31603/ae.13111.
- [54] W. Barbosa *et al.*, "Electric Vehicles: Bibliometric Analysis of the Current State of the Art and Perspectives," *Energies*, vol. 15, no. 2, p. 395, Jan. 2022, doi: 10.3390/en15020395.
- [55] I. Ullah, M. Safdar, J. Zheng, A. Severino, and A. Jamal, "Employing Bibliometric Analysis to Identify the Current State of the Art and Future Prospects of Electric Vehicles," *Energies*, vol. 16, no. 5, p. 2344, Feb. 2023, doi: 10.3390/en16052344.
- [56] I. Veza, M. Syaifuddin, M. Idris, S. G. Herawan, A. A. Yusuf, and I. M. R. Fattah, "Electric Vehicle (EV) Review: Bibliometric Analysis of Electric Vehicle Trend, Policy, Lithium-Ion Battery, Battery Management, Charging Infrastructure, Smart Charging, and Electric Vehicle-to-Everything (V2X)," *Energies*, vol. 17, no. 15, p. 3786, Jul. 2024, doi: 10.3390/en17153786.
- [57] M. T. Pham, A. Rajić, J. D. Greig, J. M. Sargeant, A. Papadopoulos, and S. A.

- McEwen, "A scoping review of scoping reviews: advancing the approach and enhancing the consistency," *Research Synthesis Methods*, vol. 5, no. 4, pp. 371–385, Dec. 2014, doi: 10.1002/jrsm.1123.
- [58] S. Gangadhar, "Types of Literature Review — A Guide for Researchers," Scispace. Accessed: Aug. 29, 2025. [Online]. Available: https://scispace.com/resources/types-of-literature-review/
- [59] M. D. J. Peters *et al.*, "Updated methodological guidance for the conduct of scoping reviews," *JBI Evidence Synthesis*, vol. 18, no. 10, pp. 2119–2126, Oct. 2020, doi: 10.11124/JBIES-20-00167.
- [60] H. Etzkowitz and L. Leydesdorff, "The dynamics of innovation: from National Systems and 'Mode 2' to a Triple Helix of university–industry–government relations," *Research Policy*, vol. 29, no. 2, pp. 109–123, Feb. 2000, doi: 10.1016/S0048-7333(99)00055-4.
- [61] J. W. Creswell and D. L. Miller, "Determining Validity in Qualitative Inquiry," *Theory Into Practice*, vol. 39, no. 3, pp. 124–130, Aug. 2000, doi: 10.1207/s15430421tip3903_2.
- [62] R. Luansing, C. Pesigan, and E. Rustico, "An e-trike ICE Project Innovative, Concrete and Ergonomic: Systems Design to Support Sustainable e-trike Commercialization," *Procedia Manufacturing*, vol. 3, pp. 2333–2340, 2015, doi: 10.1016/j.promfg.2015.07.380.
- [63] S. Istiqomah, W. Sutopo, and R. W. Astuti, "Lesson learned of business strategy for commercializing an e-motor cycle technology: A comparative study," in *Proceedings of the International Conference on Industrial Engineering and Operations Management*, 2020, pp. 969–978.
- [64] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, "A Review on Electric Vehicles: Technologies and Challenges," *Smart Cities*, vol. 4, no. 1, pp. 372–404, Mar. 2021, doi: 10.3390/smartcities4010022.
- [65] Yuniaristanto, D. E. P. Wicaksana, W. Sutopo, and M. Nizam, "Proposed business process technology commercialization: A case study of electric car technology incubation," in 2014 International Conference on Electrical

- Engineering and Computer Science (ICEECS), IEEE, Nov. 2014, pp. 254–259. doi: 10.1109/ICEECS.2014.7045257.
- [66] B. Oryani *et al.*, "Heterogeneous preferences for EVs: Evidence from Iran," *Renewable Energy*, vol. 181, pp. 675–691, Jan. 2022, doi: 10.1016/j.renene.2021.09.071.
- [67] O. Lim, "The state of Art on the promotion, policy and technology for urban EV in Korea," *Energy Procedia*, vol. 115, pp. 502–514, Jun. 2017, doi: 10.1016/j.egypro.2017.05.046.
- [68] N. Ismail, M. J. M. Nor, and S. Sidek, "A Framework for a Successful Research Products Commercialisation: A Case of Malaysian Academic Researchers," *Procedia-Social and Behavioral Sciences*, vol. 195, pp. 283–292, Jul. 2015, doi: 10.1016/j.sbspro.2015.06.163.
- [69] D. Srikandi, M. Hisjam, U. M. Asia, and D. I. Yogyakarta, "Commercializing a Technology use Global Business Strategy approach: A Lesson Learned from HVAC Companies," in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2023, pp. 3079–3090. doi: 10.46254/an12.20220564.
- [70] W. Chu, Y. Hong, W. Park, M. Im, and M. R. Song, "A New Product Risk Model for the

- Electric Vehicle Industry in South Korea," *Journal of Distribution Science*, vol. 18, no. 9, pp. 31–43, 2020, doi: 10.15722/jds.18.9.202009.31.
- [71] W. Yang, G. Cao, Q. Peng, and Y. Sun, "Effective radical innovations using integrated QFD and TRIZ," Computers & Industrial Engineering, vol. 162, p. 107716, Dec. 2021, doi: 10.1016/j.cie.2021.107716.
- [72] J. Cho and J. Lee, "Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach," *Expert Systems with Applications*, vol. 40, no. 13, pp. 5314–5330, Oct. 2013, doi: 10.1016/j.eswa.2013.03.038.
- [73] D. Ziegler and N. Abdelkafi, "Business models for electric vehicles: Literature review and key insights," *Journal of Cleaner Production*, vol. 330, p. 129803, Jan. 2022, doi: 10.1016/j.jclepro.2021.129803.
- [74] T. W. Sasongko, U. Ciptomulyono, B. Wirjodirdjo, and A. Prastawa, "Identification of electric vehicle adoption and production factors based on an ecosystem perspective in Indonesia," *Cogent Business & Management*, vol. 11, no. 1, Dec. 2024, doi: 10.1080/23311975.2024.2332497.