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Cetane number (CN) is one of the important fuel properties of diesel fuels. It is a measurement 

of the ignition quality of diesel fuel. Numerous studies have been published to predict the CN 

of biodiesels. More recently, the utilization of soft computing methods such as artificial neural 

networks (ANN) has received considerable attention as a prediction tool. However, most 

studies in the use of ANN for estimating the CN of biodiesels have only used one algorithm to 

train a small number of datasets. This study aims to predict the CN of 63 biodiesels based on 

the fatty acid methyl esters (FAME) composition by developing an ANN model that was 

trained with 10 different algorithms. To the best of our knowledge, this is the first study to 

predict the CN of biodiesels using numerous ANN training algorithms utilizing sizeable 

datasets. Results revealed that the ANN model trained with Levenberg-Marquardt gave the 

highest prediction accuracy. LM algorithm successfully predicted the CN of biodiesels with 

the highest correlation and determination coefficient (R = 0.9615, R2 = 0.9245) as well as the 

lowest errors (MAD = 2.0804, RMSE = 3.1541, and MAPE = 4.2971). Hence, the Cascade neural 

network trained with the LM algorithm could be considered a promising alternative to the 

empirical correlations for predicting biodiesel’s CN. 

Keywords: Biodiesel; Cetane number; Cascade neural network; Artificial neural network; Fuel 

properties; FAME 

1. Introduction 

Despite the emerging trend of electric vehicles 

[1], [2], the internal combustion engine (ICE) 

remains the most dominant power engine due to 

its mature technology [3]–[6]. However, it is 

important to note that ICE needs fuel from fossil 

hydrocarbons that are rare and not available in 

large amounts, making it costly to produce [7]. 

Petroleum-based fuel is commonly known for its 

derivation products such as gasoline, diesel, and 

jet fuel [8]. Regrettably, fossil fuel is still 

dominating the transportation sectors worldwide 

as the primary energy source since it is suitable for 

most engine applications [9].  

Furthermore, the increasing population, 

expanding urbanization, and better living 
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standards have raised global energy consumption 

[10]. On the contrary, fossil fuel reserves have 

been diminishing more and more in the last two 

decades. Environment concerns and anxiety over 

the decreasing fossil fuel have thus made 

alternative fuel to be a feasible option to meet 

future energy demands [11]–[13].  

The esters from vegetable oil can be used as the 

energy source for diesel engines and, due to its 

natural ingredient, is often referred to as biodiesel 

[14]. Biodiesel is among the alternative fuel that 

has gained popularity globally [15]. The use of 

such fuel is being encouraged by many countries 

to replace conventional diesel fuel with fossil. The 

main objective is to decrease dependency on 

foreign oil as well as to reduce the greenhouse 

effect. Biodiesel is believed to be a non-toxic 

biodegradable fuel that can be used in diesel 

engines without major modification. In addition, 

fuel derived from biodiesel processes has 

emerged as renewable and non-toxic compared to 

conventional diesel fuel. Neither net carbon 

dioxide nor sulfur is released from such fuel, 

emitting fewer pollutants emissions to the 

environment. 

During the late 90s, soybean oil was primarily 

used in the US, being the only oil that is 

sufficiently available to the national demand. Yet, 

the production cost to produce this edible 

vegetable oil was expensive. As a result, it was 

only used in cases of the serious scarcity of 

petroleum diesel fuel. To be commercially visible, 

it is important to reduce the cost of the feedstock. 

One possible way to make it more affordable is to 

use feedstocks that are less expensive. Used oils, 

greases, and animal fats are good sources of 

economical biodiesel.  

Many, however, are concerned with the issue 

of increasing food and water prices if biodiesel is 

produced from edible sources. Hence, second-

generation biofuels are developed, being made 

from waste materials. Waste cooking oil, for 

example, is abundant in most parts of the world. 

In fact, biodiesel from used cooking oil has been 

produced commercially in some countries. Non-

edible vegetable oils are gaining popularity as 

promising substitutions for conventional edible 

food crops. With the enormous demand for edible 

oil as a food source, the deploying of such non-

edible plant oils plays an important role to solve 

the food vs fuel dilemma. 

Low-cost sources such as oils from restaurants 

have been widely used recently with regard to 

edible feedstocks. Nevertheless, producing 

produce fuel-grade biodiesel from this low-cost 

oil is far more difficult as they encompass a high 

level of free fatty acids. Various studies have 

indicated that the use of waste cooking oil 

biodiesel reduces a considerable amount of 

particulate matter, CO, and total hydrocarbon 

emissions with no efficiency loss in several types 

of diesel engines in comparison to conventional 

diesel fuel. Some studies have also shown that 

NOx emissions rise slightly. Note that sharp rises 

in both NOx and PM emissions may occur when 

cooking oil biodiesel fuel is used.  

Many researchers have pointed out that 

biodiesel's properties bear a close resemblance to 

those of petroleum-based diesel fuel. The studies 

of biodiesel in optimization models have been 

analyzed and discussed by numerous researchers 
[16]–[18]. As a result, biodiesel can be widely used 

in diesel engines with little or no alteration. Some 

considerations, however, need to be addressed. 

Take flash point properties for example. The flash 

point is a substantial safety measure of fuel 

flammability. Biodiesel tends to have flash point 

that is two times higher than conventional diesel 

fuel. This, fortunately, can be solved by adding 

residual alcohol to lower its flash point. Another 

fuel property to be considered is viscosity. It 

affects the volume flow and injection spray 

characteristics of an engine. Biodiesel kinematic 

viscosity is known to be higher than that of diesel 

fuel. Consequently, biodiesel at low temperatures 

can be very viscous or even solidified, 

compromising the mechanical integrity of the 

injection pump drive system. Nevertheless, 

biodiesel still provides superior advantages, 

namely, relatively higher CN, no aromatics, and 

contains 10% to 11% oxygen by weight. These, 

consequently, decrease the emissions of carbon 

monoxide (CO), hydrocarbons (HC), and 

particulate matter (PM). 

CN, in particular, is an indicator of the ignition 

quality of diesel fuel. The greater the number, the 

better the fuel burns. The CN is comparable to the 

octane number for gasoline fuel as a measurement 

of combustion quality. The major difference 

between cetane and octane numbers is that the 

octane number measures the ability of a fuel to 

resist unwanted initial ignition caused by 

compression so that the fuel only ignites from a 
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spark plug. By contrast, the CN measures the 

ignition delay of a fuel. Therefore, a higher-

performance gasoline engine needs fuel with a 

greater octane number, whereas a high-

performance diesel vehicle needs fuel with a 

greater CN to enable fast ignition and avoid 

incomplete combustion. 

2. Novelty of the Study 

Regardless Regardless of the feedstock 

sources, it is important to remember that fuel 

properties of biodiesel such as density, kinematic 

viscosity, and CN should meet certain standards 

like ASTM. As most fuel properties are 

significantly reliant on the compositions of the 

feedstock, it is therefore different feedstock will 

have different fuel properties. 

Many previous studies have been published to 

estimate biodiesel CN. More recently, the 

utilization of soft computing methods such as 

artificial neural networks (ANN) has received 

considerable attention as a prediction tool [19]–

[21]. However, most studies in the use of ANN for 

estimating the CN of biodiesels have only used 

less algorithms to train small number of datasets. 

Hence, by greater number of data, it would give a 

better prediction of CN. In addition, this study 

proposed 10 different techniques (algorithm) to 

predict the CN.  

The 10 proposed techniques are not the new 

approach in ANN. However, to compare many 

techniques (more than 5) have not been 

considered yet previously in the literatures. 

Additionally, there was a lack of information on 

the best techniques. To find the best technique, 

many techniques shall be tested and compared. 

This study aims to predict the CN of 63 

biodiesels based on the fatty acid methyl esters 

(FAME) composition by developing an ANN 

model that was trained with 10 different 

algorithms as shown in Figure 1. To the best of our 

knowledge, this is the first study to predict the CN 

of biodiesel using numerous ANN training 

algorithms utilizing sizeable datasets. 

 

3. Method 

3.1. Data Gathering 

Data from 63 biodiesel CNs along with their 

fatty acid methyl esters (FAME) composition have 

been gathered from previous studies [22]–[26] and 

are presented in Table 1. The dataset has values of 

CN ranging from 20.4 to 86.9. 

 

3.2. Cascade Neural Network 

Previous studies have noted the importance of 

artificial neural networks [27], [28]. However, 

numerous machine learnings have been studied 

for prediction models or other purposes, such as 

response surface method (RSM), surrogate model, 

and metamodelling.     

 

 
Figure 1. Ten algorithms used in this study for cascade neural network 
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Table 1. FAME composition of different biodiesel sources 

Biodiesel 12:00 14:00 16:00 16:01 18:00 18:01 18:02 18:03 20:01 22:01 CN 
Lauric 100 0 0 0 0 0 0 0 0 0 61.4 
Myristic 0 100 0 0 0 0 0 0 0 0 66.2 
Palmitic 0 0 100 0 0 0 0 0 0 0 74.5 
Stearic 0 0 0 0 100 0 0 0 0 0 86.9 
Oleic 0 0 0 0 0 100 0 0 0 0 55 
Palmitoleic 0 0 0 100 0 0 0 0 0 0 51 
Linoleic 0 0 0 0 0 0 100 0 0 0 42.2 
Erucic 0 0 0 0 0 0 0 0 0 100 76 
Eicosanoic 0 0 0 0 0 0 0 0 100 0 64.8 
Linolenic 0 0 0 0 0 0 0 100 0 0 20.4 
Soybean 0 0.1 10.5 0.1 3.7 23.2 48.9 1.2 0.3 0.1 47.2 
Inedible tallow 0.1 2.1 23.9 2.8 19.5 38.5 6.4 0.3 0.5 0.1 61.7 
Thevetia peruviana M. 0 0 15.6 0 10.5 60.9 5.2 7.4 0 0 57.5 
Moringa oleifera Lam 0 0 9.1 2.1 2.7 79.4 0.7 0.2 0 0 56.7 
Pongamia pinnata P. 0 0 10.6 0 6.8 49.4 19 0 2.4 0 55.8 
Holoptelia integrifolia 0 3.5 35.1 1.9 4.5 53.3 0 0 0 0 61.2 
Vallaris solanacea K. 0 0 7.2 0 14.4 35.3 40.4 0 0 0 50.3 
Aleurites moluccana 0 0 5.5 0 6.7 10.5 48.5 28.5 0 0 34.2 
Euphorbia helioscopia L 2.8 5.5 9.9 0 1.1 15.8 22.1 42.7 0 0 34.2 
Garnicia morella D. 0 0 0.7 0 46.4 49.5 0.9 0 0 0 63.5 
Saturega hortensis Linn 0 0 0.4 0 0.4 12 18 62 0 0 25.5 
Actinodaphne angust. 87.9 1.9 0.5 0 5.4 0 0 0 0 0 63.2 
Litsea glutinosa Robins 96.3 0 0 0 0 2.3 0 0 0 0 64.8 
Neolitsea cassia Linn 85.9 3.8 0 0 0 4 3.3 0 0 0 64 
Swietenia mahagoni J. 0 0 9.5 0 18.4 56 0 16.1 0 0 52.3 
Argemone mexicana 0 0.8 14.5 0 3.8 18.5 61.4 0 0 0 44.5 
Salvadora persica Linn 19.6 54.5 19.6 0 0 5.4 0 0 0 0 67.5 
Madhuca butyracea M. 0 0 66 0 3.5 27.5 3 0 0 0 65.3 
Rhus succedanea Linn 0 0 25.4 0 0 46.8 27.8 0 0 0 52.2 
Basella rubra Linn 0 0.4 19.7 0.4 6.5 50.3 21.6 1.1 0 0 54 
Corylus avellana 0 3.2 3.1 0 2.6 88 2.9 0 0 0 54.5 
Jatropa curcas Linn 0 1.4 15.6 0 9.7 40.8 32.1 0 0 0 52.3 
Croton tiglium Linn 0 11 1.2 0 0.5 56 29 0 0 0 49.9 
Princeptia utilis Royle 0 1.8 15.2 0 4.5 32.6 43.6 0 0 0 48.9 
Vernonia cinerea Less 0 8 23 0 8 32 22 0 0 0 57.5 
Joannesia princeps V. 0 2.4 5.4 0 0 45.8 46.4 0 0 0 45.2 
Garcinia combogia D. 0 0 2.3 0 38.3 57.9 0.8 0.4 0.3 0 61.5 
Garcinia indica Choisy 0 0 2.5 0 56.4 39.4 1.7 0 0 0 65.2 
Illicium verum Hook 0 4.4 0 0 7.9 63.2 24.4 0 0 0 50.7 
Melia azadirach Linn 0 0.1 8.1 1.5 1.2 20.8 67.7 0 0 0 41.4 
Myristica malabarica L 0 39.2 13.3 0 2.4 44.1 1 0 0 0 61.8 
Urtica dioica Linn 0 0 9 0 0 14.6 73.7 2.7 0 0 38.7 
Tectona grandis Linn 0 0.2 11 0 10.2 29.5 46.4 0.4 0 0 48.3 
Canola 0 0.1 5.2 0.2 2.5 58.1 28.1 0.4 1.6 0.4 55 
Lard 0.1 1.9 24.5 2.8 14.4 38.3 13.4 0.3 0.7 0.1 63.6 
Yellow grease 0 1.1 17.3 2.2 9.5 45.3 14.5 1.3 1.3 0 52.9 
Rape 0 0 4.8 0 1.6 33 20.4 7.9 9.3 23 55 
Linseed 0 0 5 0 2 20 18 55 0 0 52 
Wild mustard 0 0.1 2.6 0.2 0.9 7.8 14.2 13 5.4 45.7 61.1 
Waste palm oil 0 1 39 0.2 4.3 43.7 10.5 0.2 0.2 0 60.4 
Balanites roxburhii 0 0 17 4.3 7.8 32.4 31.3 7.2 0 0 50.5 
Garnicia echinocarpa 0 0 3.7 0 43.7 52.6 0 0 0 0 63.1 
Neolitsea umbrosa G. 59.1 11.5 0 0 0 21 6.7 0 0 0 60.8 
Anamirta cocculus 0 0 6.1 0 47.5 46.4 0 0 0 0 64.3 
Broussonetia p. Vent. 0 0 4 0 6.1 14.8 71 1 0 0 41.2 
Salvadora oleoiles D. 35.6 50.7 4.5 0 0 8.3 0.1 0 0 0 66.1 
Nephelium L. 0 0 0.2 0 13.8 45.3 0 0 4.2 0 64.9 
Ziziphus maurit. L. 0 0 10.4 0 5.5 64.4 12.4 0 2.6 1.7 55.4 
Jojoba 0 0 1.2 0 0 10.7 0.1 0.4 59.5 12.3 69 
Rape 0 0 4.9 0 1.6 33 20.4 7.8 9.3 23 55 
Peanut 0 0.1 8 0 1.8 53.3 28.4 0.3 2.4 0 53 
Grape 0 0.1 6.9 0.1 4 19 69.1 0.3 0 0 48 
Sunflower 0 0 6 0.1 2.9 17 74 0 0 0 49 

 

The previous techniques provide a better result 

in small dataset. However, design of experiment 

(DOE) is required for those techniques. If the 

techniques is applied with random dataset 
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(scattered data), less accuracy will be achieved. 

Therefore, ANN give better result for random 

dataset. 

Cascade neural network, in particular, is a 

neural network class that is analogous to feed-

forward networks. Yet, the cascade neural 

network has a connection from the input as well 

as each preceding layer to following layers. In a 

network with three layers, for example, the output 

layer is directly connected with the input and 

hidden layer. Similar to feed-forward networks, a 

two or extra layer cascade neural network can 

learn the input-output relationship randomly well 

using sufficient hidden neurons. Cascade neural 

network can be utilised for any type of mapping 

from input to output. The benefit of this technique 

is that it contains the nonlinear input-output 

relationship by not disregarding such linear 

relationship. Figure 2 shows the cascade neural 

networks architecture. The equation of cascade 

neural network is following Eq. 1. 

Here, f I and Wi
I are the activation function and 

weight from the input to the output layer, 

respectively. When there is an additional bias, Eq. 

1 becomes Eq. 2.  

y = ∑ f iWi
ixi + f o (∑ Wj

o

k

j=1

fj
h (∑ Wji

h

n

i=1

xi))

n

i=1

 (1) 

y = ∑ f iWi
ixi + f o (𝑊𝑏 + ∑ Wj

o

k

j=1

fj
h (𝑊𝑗

𝑏 + ∑ Wji
h

n

i=1

xi))

n

i=1

 (2) 

 

In the present study, the data were distributed 

randomly by 70%, 15% and 15% for training, test 

and validation. Log-sigmoid (logsig) was set as 

the hidden layer transfer functions, whereas the 

linear (purelin) was set as the output layer. The 

flowchart of cascade neural network used in the 

present study is given in Figure 3. 
 

 
Figure 2. The general architecture of cascade neural 

networks 

 
Figure 3. Flowchart of cascade network algorithm 

 

3.3. Performance Criteria 

Five different criteria were used; R, R2, MAD, 

RMSE and MAPE to evaluate the prediction 

accuracy of each model using the following Eq. 3-

Eq. 7. 

Correlation Coefficient (R), 

R = √1 − {
∑ (𝑀𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ 𝑃𝑖
2𝑛

𝑖=1  
} (3) 

Determination Coefficient (R2), 

R2 = 1 − {
∑ (𝑀𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ 𝑃𝑖
2𝑛

𝑖=1  
} (4) 

Mean Absolute Deviation (MAD), 

MAD =
1

𝑛
∑|𝑀𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 (5) 

Root Mean Squared Error (RMSE), 

RMSE = √
1

𝑛
∑(𝑀𝑖 − 𝑃𝑖)2

𝑛

𝑖=1

   (6) 

Mean Absolute Percentage Error (MAPE), 

MAPE = {
100

𝑛 
∑ |(

𝑀𝑖 − 𝑃𝑖

𝑀𝑖
)|

𝑛

𝑖=1

} % (7) 

 

4. Results and Discussion 

Figure 4 shows the coefficient of correlation (R) 

and determination (R2) for 10 different algorithms 

in cascade neural network examined in this study. 

R measures the association closeness of the points 

to a line of linear regression according to such 

points. Possible values of R varied from -1 to +1, 

.

.

. .
.
.

Output (Y1)

Output (Y2)

Input (X1)

Input (X2)

Input (X3)

Input (Xn)

Input Layer

Output Layer

Hidden Layer

Weight
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with -1 showing a perfectly linear inverse 

correlation and +1 showing that of positive 

correlation. Detailed R values of Cascade-LM 

algorithms for training, validation, test and all are 

presented in Figure 5. Moreover, the 

determination coefficient is a prediction criterion 

used to quantify how much variability of one 

particular factor can be triggered by its connection 

to another associated factor. The determination 

correlation is also known as the "goodness of fit," 

whose value ranging from 0 and 1, with value of 1 

indicating a perfect fit, and is therefore a 

substantially reliable model for future predictions, 

while 0 indicating that the estimate does not 

accurately model the data at all. 

The highest value of correlation and 

determination coefficient is given by Levenberg 

Marquardt algorithm. With an R value of 0.9615, 

LM algorithm signifies almost a perfectly linear 

positive correlation. Furthermore, the LM 

algorithm with a R2 value of 0.9245 suggests that 

92.45% of the dependent variable is predicted well 

by the independent variable. On the contrary, the 

lowest value of correlation and determination 

coefficient is given by Gradient Descent with 

Momentum and Adaptive Learning Rate (GDX) 

with an R value of 0.7885 and R2 of 0.6217. 
 

 
Figure 4. R and R2 values for the ten investigated 

training algorithms 

 

 

 
Figure 5. R values of Cascade-LM algorithms for training, validation, test and all 
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Figure 6 shows the value of MAD, RMSE and 

MAPE for all 10 training algorithms in cascade 

neural network examined in this study. MAD is a 

variability measure which denotes the average 

distance between examinations and their mean 

values. The term of the mean absolute deviation 

resonances to the standard deviation (SD). Both 

MAD and SD measure variability, but they have 

different calculations. Due to its relatively 

straightforward concept that better fits real life 

application, MAD is favoured to replace the 

standard deviation. Another method to evaluate 

how well a regression model fits a dataset is by 

calculating the RMSE. It is a metric that signify the 

average distance between the estimated values 

from the model and the real dataset values. The 

last prediction accuracy used in this study is 

MAPE. It measures a forecast system accuracy as 

a percentage. MAPE is considered as the most 

frequent measure used to predict error, working 

at its best when there are no extremes and no 

zeros. 
 

The lowest value of MAD, RMSE and MAPE is 

given by Levenberg Marquardt algorithm, while 

that of the highest is given by Gradient Descent 

with Momentum and Adaptive Learning Rate 

(GDX).  LM’s lowest MAD value shows that data 

points bunching closer to its average value. 

Conversely, the highest MAD value of GDX 

indicates that the data points in Gradient Descent 

with Momentum and Adaptive Learning stretch 

further from the average values. LM’s lowest 

RMSE value indicates the best prediction accuracy 

among of an Levenberg Marquardt among other 

investigated training algorithm to fit well a 

dataset. As far as the mean absolute percent error 

is concerned, the MAPE value of LM is 4.2971% 

meaning that the prediction is off by just over 4%. 

Note that since the MAPE is a percentage, it is far 

easier to comprehend its value compared to other 

accuracy measure. 

Detailed results of R, R2, MAD, RMSE, and 

MAPE are provided in Table 2. Furthermore, the 

best results provided by Levenberg Marquardt 

algorithm is comprehensively provided in Figure 

7 where actual and predicted CN for various test 

cases are presented. Looking at Table 2 and Figure 

7, it is apparent that the LM and GDX training 

algorithm shows the best and the worst prediction 

accuracy, respectively. 

 
Figure 6. Errors for the ten investigated training 

algorithms 
 

 
Figure 7. Actual and predicted CN for various test 

cases using Cascade Levenberg-Marquardt training 

algorithm 
 

There are a number of explanations for the 

above results. Since there are two possible 

possibilities for the direction at every iteration, the 

LM is more robust. Levenberg Marquardt is also 

faster to converge than gradient descent. 

Moreover, LM is able to handle models with more 

than free parameters that are not exactly known. 

If the initial estimation is far-off from the mark, the 

LM algorithm is still able to discover the optimal 

solution. However, the Levenberg Marquardt 

may sometimes suffer from several drawbacks. 

For flat functions, the LM algorithm may become 

lost in parameter space. In several cases, such 

training algorithm can become exceptionally slow 

to converge. This is predominantly true when the 

model has more than ten parameters that needs 

the algorithm to move slowly along a closely well-

defined crawl space. 
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Table 2. Performance evaluation of ANN models 

ANN training algorithm R R2 MAD MSE RMSE MAPE 

Cascade-LM 0.9615 0.9245 2.0804 9.9486 3.1541 4.2971 

Cascade-BFG 0.8815 0.7770 3.3011 31.4749 5.6103 6.5837 

Cascade-CGF 0.9422 0.8877 2.7139 14.5417 3.8134 5.4417 

Cascade-CGP 0.8741 0.7641 3.6203 34.9113 5.9086 7.0998 

Cascade-GDA 0.9423 0.8880 2.5798 14.9114 3.8615 4.7941 

Cascade-GDX 0.7885 0.6217 5.3485 63.6301 7.9768 10.7621 

Cascade-OSS 0.9528 0.9079 2.3282 11.8651 3.4446 4.7966 

Cascade-RP 0.9222 0.8504 2.6972 20.2798 4.5033 5.2346 

Cascade-SCG 0.9365 0.8771 2.9094 16.2064 4.0257 5.6135 

Cascade-BR 0.9495 0.9015 2.5191 12.7715 3.5737 5.3889 

5. Conclusion 

In this study, a dataset of 63 samples of 

biodiesel was used to build an ANN model. To 

predict the CN of biodiesels in terms of their fatty 

acid methyl esters composition, 10 different ANN 

training algorithms using a 10-10-1 network 

structure were compared and analyzed. Results 

revealed that the ANN trained with Levenberg-

Marquardt gave the highest accuracy. This model 

successfully predicted the CN of biodiesels with 

the highest correlation and determination 

coefficient (R = 0.9615, R2 = 0.9245) as well as the 

lowest errors (MAD = 2.0804, RMSE = 3.1541, and 

MAPE = 4.2971).  

CN determination by means of experimental 

work is a relatively expensive and laborious 

process. For that reason, developing accurate 

models for predicting biodiesel’s CN from its 

FAME composition for various feedstocks would 

be beneficial. In the present study, we have shown 

that the Cascade neural network trained with the 

Levenberg-Marquardt algorithm using a 10-10-1 

network structure was considered a promising 

alternative to the expensive experimental or 

empirical correlations for predicting biodiesel’s 

CN. This promising alternative has a potential 

approach for further research by continuing the 

prediction model of CN with larger data.  
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