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In this paper, Metallic Catalytic Converter (MCC) is installed in motorcycle exhausts to 

produce the minimum CO as well as to produce the optimum engine power. The results from 

previous research were collected and then used to predict the best MCC design using the 

Artificial Neural Network-Multiobjective Genetic Algorithm (ANN-MOGA). In addition, the 

ANN parameter tuning process was also carried out using the Taguchi method to find the 

initial weighting and bias that is able to provide the best and the most stable performance to 

predict the best MCC design. The best two sets of design solutions out of 70 sets of Pareto 

solutions were obtained by ANN-MOGA. Those two MCC designs are the optimum emission 

design and the optimum multiobjective design. The verification results show that the optimum 

multiobjective design tends to be superior in terms of CO emissions and engine power. In 

terms of CO emissions, the optimum multiobjective design gets a larger S/N ratio of -10.98, 

while the optimum emission design only gets an S/N ratio of -11.21. Meanwhile, in terms of 

engine power, the optimum multiobjective design gets a larger S/N ratio of 16.13, while the 

optimum emission design only gets an S/N ratio of 15.86 S/N. It is in line with the ANOVA test 

results which show that the optimum multiobjective design is proven to be better than the 

optimum emission design. 

Keywords: Metallic Catalytic Converter; Pareto solutions; Artificial Neural Network; Genetic 

Algorithm; CO Emission; Engine Performance 

1. Introduction 

Along with the increasing number of 

motorized vehicles, especially motorbikes, fuel 

consumption and tailpipe emissions have become 

an ongoing discussion by stakeholders and 

researchers [1]–[3]. Therefore, global and local 

emission standards are increasingly stringent, 

especially in limiting carbon monoxide (CO) and 

hydrocarbons (HC) from exhaust pipes. In 

Indonesia, motor vehicle emissions are regulated 

in the Minister of Environment Regulation No. 5 

of 2006. It was stipulated that CO and HC 

emissions allowed were 5.5% and 2400 ppm by 

volume for motorcycles produced until 2010. 

Meanwhile, CO and HC emissions allowed were 

each 4.5% and 2000 ppm volume for motorcycles 

manufactured after 2010. CO and HC can be 

reduced by the application of alternative fuels, the 

addition of a mixture control device, as well as 

modification of engine components [4]–[10]. CO 

and HC emissions at the exhaust end can also be 

reduced by the application of Metallic Catalytic 

Converter (MCC). This technology works by 

oxidizing CO emissions to CO2 and HC emissions 

to H2O [11]. Thus, exhaust emissions from the 

exhaust end become more environmentally 

friendly. 

Currently, the MCC used by automotive 

manufacturers is made of platinum group metal 

(PGM). This material was effective to decrease 

emissions up to 85–90% for CO and HC at 250 °C 

and up to 100% NOx at 400 °C [12]–[14]. 

Unfortunately, this material also has some 

weaknesses, for example in production costs and 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/index
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.31603/ae.7977
https://crossmark.crossref.org/dialog/?doi=10.31603/ae.7977&domain=pdf&date_stamp=2023-04-28


© Sudirman Rizki Ariyanto, Suprayitno, Retno Wulandari  

Automotive Experiences  201 
 

availability of the raw material [15]. Therefore, 

further development of MCC is carried out by 

using alternative materials that have similar 

characteristics to PGM [16]. Some works are 

focused on optimizing the MCC configuration, 

from the use of mono, dual, and three-way 

designs to minimizing exhaust emissions. Until 

now, the three-way catalytic converter is mostly 

used in MCC applications [17]. 

Functionally, MCC was created to reduce 

exhaust emissions from motorized vehicles, 

especially gasoline engines. However, the use of 

MCC is also reported to have an impact on engine 

performance. Prabhahar et al. [18] reported that 

the use of copper in the MCC was quite effective 

in the oxidation process of CO and HC emissions 

and increased engine performance which was 

affected by the inlet and outlet angles of the MCC 

casing. According to Bell theory [19], the inlet and 

outlet angles of the MCC casing are designed to 

optimize exhaust flow by minimizing back 

pressure. Bhure [20] reported that the higher the 

back pressure, the lower the engine performance. 

Other researchers claim that using MCC with 

copper material coated with titanium dioxide 

(TiO2) can increase torque by 7.15% and power by 

6.13% [21]. Furthermore, Ellyanie & Oktabri [22] 

proved that the brass catalytic converter increased 

engine efficiency by around 17.65%. 

Based on previous studies, it is known that the 

process of finding the best MCC design is carried 

out through experimental research which is 

relatively expensive and requires a long time. 

Therefore, referring to previous MCC research 

data, we chose the optimization method with 

Artificial Neural Network-Multiobjective Genetic 

Algorithm (ANN-MOGA) to predict the best 

MCC design. In this study, ANN was chosen 

because of its ability to accommodate complex 

non-linear data with multiple inputs [23], [24]. It 

is known that data from previous research is not 

well patterned, as well as from various 

configurations, types of materials, and vehicles. 

Furthermore, in this study there are six MCC 

configuration parameters used as input data with 

two output parameters. 

This research also uses MOGA as the search 

engine for the MCC parameters combinations. It is 

called multiobjective or Pareto optimization 

because it is different from single-objective 

optimization. Pareto optimization solves 

problems involving two or more objectives that 

are contradicted each other [25]. In this case, two 

objectives to be optimized simultaneously are CO 

emissions and power. These goals contradict each 

other, where by implementing MCC it is expected 

to produce the CO as low as possible and produce 

the engine power as much as possible [26]. 

Meanwhile, the use of genetic algorithms is 

known to be very powerful, efficient, and well 

known to have a small probability of being 

trapped in the local optimum [27]. The ANN-

MOGA optimization of the MCC design is the 

original contribution of this paper. This work 

shows some of the best design solutions of MCC 

that do not outperform each other (also known as 

frontier Pareto solutions or Pareto solutions or 

non-dominant solutions) and can be selected 

according to needs in the use of MCC. 

 

2. Methods 

2.1. Data Sets 

This research uses the data set obtained from 

previous collaborative works [28]–[34]. From 

these works, a total of 231 data sets representing 

different MCC designs under various engine 

operating rotational speeds were collected based 

on six design variables. The six design variables 

which are also the ANN input parameters are (1) 

material (Mtl); (2) curve height (CH); (3) tube 

length (TL); (4) tube diameter (TD); (5) input angle 

(IA); and (6) output angle (OA) as shown in 

Figure 1. The determination of the MCC variable 

was chosen based on similarities from several 

previous studies. In this case, the material is the 

main reference while several previous studies 

used more than three types of materials from 

alternative metal groups such as copper, chrome-

plated copper, and brass. 

The variables referred to hereinafter related to 

efforts to obtain the largest possible surface area 

by modifying the indentation height, tube length, 

tube diameter, inlet angle, and outlet angle of the 

MCC. According to the Bernard study [35], the 

specific surface area of the catalyst greatly 

influences the efforts to accelerate the catalytic 

reaction rate.  In this case, the MCC performance 

is measured from the level of CO emissions and 

engine power. The selection of CO emissions and 

engine power as indicators in determining MCC  
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Figure 1. MCC construction on exhaust system 

 

performance is based on the similarity of the 

trends of the two variables. When CO emissions 

increase, it is certain that the HC emissions also 

increase. As well as when engine power increases, 

it is certain that engine torque increases. 

Considering those facts, in the design 

optimization process, MCC performance is 

measured from CO exhaust emission levels and 

engine power. The 231 data sets were then used to 

train the ANN to map the six design variables to 

two output MCC performances. 

 

2.2. Optimization Process 

ANN have extraordinary abilities in 

predicting, classifying, and matching real data 

and can be adjusted according to needs. For 

example, to process non-linear data, it is highly 

recommended to use a three-layer neural network 

or what is commonly called a multilayer 

perceptron (MLP) [36]. The three layers include 

the input layer, the hidden layer, and the output 

layer [37]. The selection of the input variables is 

based on the variables that affect the output 

variable - decreasing CO emissions and increasing 

power. Based on the literature study and the 

results of previous studies, it is known that there 

are six influential variables as described in the 

sub-data set. Meanwhile, the combination of 

hidden layer and neuron parameters is obtained 

through the ANN parameter tuning process using 

the Taguchi method with a signal-to-noise (S/N) 

ratio approach. 

Signal-to-noise ratio (S/N) is a logarithmic 

function that is used to optimize the product of 

each parameter and analyze the parameter 

variations [26]. Good or bad product quality 

depends on the S/N ratio category used. For 

example, smaller the Better (STB), Larger the 

Better (LTB), or Nominal the Best (NTB) [38]. 

Mitra et al. [39] states that the use of the Taguchi 

method is more effective if it is used to optimize 

the mean and minimize the standard deviation, 

which refers to the use of the S/N ratio type 

smaller the better (Eq. 1). It is expected that the 

noise or error generated is relatively small. So, it 

shows the stability of the initial weighting and 

bias [40]. However, we need to keep in mind that 

regardless of the characteristics or type of S/N 

ratio chosen, the interpretation always leads to the 

larger the better type. It means that the smaller the 

mean and standard deviation and the greater the 

value of the S/N ratio, the better [41]. 
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where, n is the number of trials, while y2i is the 

measurement value [42]. The tuning results show 

that the MCC ANN structure can work optimally 

when using the combination of hidden layer 

parameters and neurons of three layers and seven 

neurons, respectively. Meanwhile, the transfer 

function hidden layer and output layer 

respectively use sigmoid log and tan sigmoid with 

Levenberg-Marquadt as learning algorithm  (from 

previous result). In detail, the ANN structure is 

presented in Figure 2. 

After the ANN structure parameter 

combination has been found, the next step is to 

compile the ANN modeling structure coding. 

Coding that has been compiled is then executed, 

where the running process from the previously 
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provided dataset (231 variations of the MCC 

design) is divided randomly into three partitions, 

namely training data, validation data, and testing 

data. Alaloul [43] explains that the training step is 

a crucial process in constructing ANN. 70% of the 

231 data set was used as training data, while 15% 

as validation data to avoid overfitting ANN 

learning process [44]. The rest of the 15% data was 

then used as the testing data to evaluate the ANN 

accuracy. Training, validating, and testing data 

were randomly selected from 231 data sets [24].  

The performance of ANN modeling can be 

measured based on the error shown by the output. 

The smaller the error generated, the more optimal 

the ANN modeling performance. If the error 

value generated is relatively large, the predicted 

value generated is certainly not accurate. So, 

improvements need to be made [45]. In this case, 

the improvement can be divided into two 

solutions, where the first solution is to increase the 

amount of data entered in the dataset, while the 

second solution is to retune the ANN structure 

using a different method. This process can be 

repeated so that ANN modeling can produce 

accurate predictive values to be continued in the 

verification process. 

The next process after the ANN modeling is 

completed is compiling a MOGA coding. In this 

case, MOGA is used considering its advantages as 

a search engine for a combination of parameters 

that is strong and efficient. It is also not easily 

trapped in the local optimum [46]. MOGA 

optimization is specifically carried out to find a 

combination of input variables from the MCC that 

can provide a small value of CO emissions with a 

large power value. The MOGA optimization 

stages can be visualized as shown in Figure 3. 

 

 
Figure 2. MCC effect plot to S/N ratio 

 

 
Figure 3. MOGA optimization stages 

http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/index


© Sudirman Rizki Ariyanto, Suprayitno, Retno Wulandari  

Automotive Experiences  204 
 

In the initial population and fitness evaluation 

stages, the initial population was collected 

through the results of previous MCC studies 

based on six MCC parameters, which were then 

measured for their fitness evaluation values. The 

next stage is parent selection which is intended to 

get some of the best parent pairs which will then 

enter the crossover stage [47]. The Crossover is 

done by mating the two individuals to get a new 

individual. This process is carried out by 

exchanging several combinations of the first 

parent's MCC variables with combinations of 

MCC variables from the second parent [48]. After 

the crossover process is carried out, the mutation 

process is continued. The mutation process in this 

study was carried out on one or more MCC 

variables in order to prevent the population from 

having variables that were too similar to each 

other [49]. 

At the mutation stage, a new individual is 

obtained with a different combination of MCC 

variables from the previous individual. The new 

individual is then tested for fitness through the 

ANN modeling structure that has been built. 

From the ANN modeling, it is possible to know 

the predictions of the CO and HC values that will 

be obtained. After several new individuals have 

been tested for fitness, the next step is population 

selection. Population selection is based on some of 

the best parents, which is grouped with new 

individuals who have predicted CO and its 

power. Individuals in the new generation will 

survive (not be eliminated) if they produce CO 

and better power than the previous generation, 

and vice versa [50]. 

Another goal that needs to be optimized 

simultaneously in this research is CO emissions 

and power. These goals are of course 

contradictory to each other, whereby applying 

MCC it is hoped that the CO value is as small as 

possible, and the power value is as large as 

possible. Therefore, there is no single solution 

from MCC that can be considered optimal. 

However, in this research, we will obtain a set of 

optimal solutions known as non-dominated 

solutions or Pareto optimal solutions or Pareto 

fronts [26]. The optimum point of a set of optimal 

solutions obtained will be shown along the lines 

or points of the Pareto front graph. 

 
2.3. Instruments for Verification 

The research tools and instruments used in this 

study is presented in Figure 4 and their 

specification is presented in Table 1. In addition, 

the data collection process for backpressure on the 

muffler is also carried out. It aims to measure how 

much exhaust gas pressure is trying to return to 

the combustion chamber before and after using 

the MCC [51]. Back pressure measurements were 

carried out using a U-tube manometer (Figure 5) 

and calculated by the Eq. (3), where 𝛥𝑃 is pressure 

difference, 𝜌  is density, 𝑔  is gravitational 

acceleration, and is ℎ liquid level [52]. 
 

𝛥𝑃 = 𝜌 𝑔 ℎ (3) 

 
Figure 4. Research instruments 
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Table 1. Specifications for research equipment and instruments 

No Specification Chassis Dynamometer Exhaust Gas Analyzer Blower 

1. Brand Rextor Pro-Dyno Heshbon HG-520 Krisbow 

2. Voltage 220 V 50/60 Hz 220/240Vac 50/60Hz 230 V, 7.60 A 

3. Operation range 6.000 rpm with 150 gears 0-9.99% with 0.01% resolution 1200 rpm 

 

 
Figure 5. Illustration of back pressure measurement 

 

Data collection was carried out in the 

Mechanical Performance Testing Laboratory, 

Department of Mechanical Engineering, Faculty 

of Engineering, Universitas Negeri Surabaya. The 

research equipment and instruments used are 

shown in Figure 4. In addition, in the process of 

obtaining valid and reliable research data, CO 

emission and power testing are carried out based 

on national and international standards. The 

measurement of motorcycle exhaust emissions is 

based on SNI 09-7118.2 [53], while the 

measurement of engine performance is based on 

SAE J1349 [54]. 

 

3. Results and Discussion 

3.1. ANN-MOGA Optimization Results 

The database used in the ANN-MOGA 

optimization process is data from previous 

studies with similar input variables. ANN-

MOGA coding works by studying and 

recognizing previous research data patterns 

which are then used to predict the 

combination of MCC variables with the 

smallest possible CO emission value and the 

largest possible vehicle power. Through this 

interface (Figure 6), we can ensure that the 

structure of the ANN is in accordance with 

the results of the ANN parameter tuning. 

After showing the interface structure of the 

ANN from nntraintool, then the Pareto front 

interface diagram appears to show the 

process of finding the best MCC design as 

shown in Figure 7. 

From Figure 7, we can see that there are two 

main objectives that are used as benchmarks 

in determining the best design - CO emissions 

and power. The optimal points based on the 

two obejectives are distributed along the 

points of the Pareto optimal graph. This point 

is then more commonly known as the set of 

trade-off optimal solutions or Pareto optimal 

solutions or Pareto fronts [26]. In this case, if 

one set of solutions in the diagram is 

presented in the form of design variations, 

then there are 70 sets of MCC design 

solutions that do not dominate each other. 

The meaning of not dominating each other is 

certainly related to the compromise value 

that is in accordance with the optimization 

objectives without reducing the ability of one 

of the output variables [55], [56]. 

Furthermore, the 70 sets of solutions were 

analyzed in greater depth through equal 

weighting. As a result, two sets of the best 

design solutions were found as shown in 

Table 2. 
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Based on the results, the two optimum 

design sets were selected from the 70 design 

solutions sets. These designs include MCC 

Design 37, which is the design with the 

smallest CO emission value, and MCC 

Design 39, which is a design that considers 

the smallest possible CO emission value with 

the most significant possible power value. 

MCC Design 37 is hereinafter referred to as 

optimum emission design while MCC Design 

39 is referred to as optimum multiobjective 

design. The two designs were then tested 

experimentally. 

 

 
Figure 6. Interface neural network training 

 

 
Figure 7. Pareto optimal solutions 

 
Table 2. Test results on ANN-MOGA output 

MCC Material 
CH 

(mm) 

TD 

(mm) 

TL 

(mm) 

IA 

(o) 

OA 

(o) 

Engine 

speed 

(rpm) 

CO 

(%Vol) 

Power 

(HP) 

Optimum emission 

design 
CuCr 2.8 63.1 70.5 12 14 9249 0.18 3.1 

Optimum multiobjective 

design 
CuCr 3.5 60.8 88.1 12 22 9302 0.53 13.5 

 
3.2. Experimental Verification Results 

Experimental testing of optimum emission 

design and optimum multiobjective design 

was carried out to test the actual value of CO 

emissions and the resulting vehicle power. 

The optimum emission design and optimum 
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multiobjective design MCC fabrication 

results are presented in Figure 8. Tests were 

carried out on three different types of vehicles 

(Figure 4), where each vehicle represented a 

type of sport, automatic, and moped.  

Referring to the prediction results of 

ANN-MOGA, it is known that the value of 

CO emission and the best vehicle power from 

the optimum emission design is produced at 

9249 rpm. Meanwhile, the optimum 

multiobjective design was found at 9302 rpm. 

The two engine speed values will certainly be 

difficult to obtain under actual test 

conditions, so in this study, the comparison of 

test results was carried out at 9000 rpm. The 

comparison results are shown in Table 3.  

Referring to the results of the S/N ratio 

calculation based on testing at 9000 rpm 

(Table 3), it is known that the optimum 

emission design gets an S/N ratio calculation 

value of -11.35 while the optimum 

multiobjective design gets the calculation 

value of the S/N ratio of -10.32. The 

calculation of the S/N ratio on the CO 

emission test results uses the smaller the 

better type, which means the smaller the 

mean and standard deviation values, and the 

larger the S/N ratio, the better (Eq. 1) [41]. 

Therefore, from these two values, we can 

observe that the optimum multiobjective 

design produces an S/N ratio value that is 

greater than the optimum emission design. 

That is, based on the results of experimental 

verification, the optimum multiobjective 

design tends to produce lower CO emissions 

than the optimum emission design. 

 

  

(a) 

  

(b) 
Figure 8. MCC designed: (a) optimum emission design and (b) optimum multiobjective design 

 
Table 3. Comparison S/N ratio at 9000 rpm 

MCC 
Mean STDEV S/N Ratio 

CO Power CO Power  CO Power 

Optimum emission design 2.46 8.50 2.76 4.59 -11.35 15.86 

Optimum multiobjective design 2.14 8.60 2.49 4.44 -10.32 16.13 

 

In line with the results of the CO emission 

test, the results of the vehicle power test also 

show that the optimum multiobjective design 

tends to be better than the optimum emission 

design. It is evidenced by the results of the 

S/N ratio calculation based on laboratory 
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scale testing. Optimum emission design gets 

an S/N ratio calculation value of 15.86 while 

the optimum multiobjective design gets an 

S/N ratio calculation value of 16.13. The 

calculation of the S/N ratio on the results of 

the vehicle power test uses the larger the 

better type, which means the smaller the 

standard deviation value, the greater the 

mean value, and the better S/N ratio (Eq. 2) 

[57]. From these two values, we can observe 

that the optimum multiobjective design 

produces an S/N ratio value that is greater 

than the optimum emission design. Based on 

the results of experimental verification, the 

optimum multiobjective design tends to 

produce greater vehicle power than the 

optimum emission design. 

Experimental testing was carried out on 

both MCC designs using three different types 

of motors and tested at different engine 

speed. Analysis of variance (ANOVA) was 

carried out on these three variables, both for 

CO emissions and engine power with a 

significance level, α=0.05. Analysis of 

variance on the motor types and rotation 

variation is used to block the effect of the two 

variables. The three types of motorbikes are 

Yamaha Vixion, Honda Vario and Honda 

Supra. There are 9 levels of engine speed for 

testing CO emissions starting from 1500 rpm 

(idle) to 9000 rpm in multiples of 1000 rpm. 

Meanwhile, for engine power testing, there 

are 14 levels of engine speed from 3000 rpm 

to 9500 rpm in multiples of 500 rpm. The 

engine power measurement starts from 3000 

rpm, this is based on the output data that 

comes out of the dynamometer chassis 

software starting from that rotation. 

For CO emission, the ANOVA results 

show a significance of 0.102, which is greater 

than the significance level of α=0.05 to accept 

the null hypothesis (H0), as shown in Table 4. 

Thus, the two MCC designs do not differ 

significantly in terms of CO emissions. 

However, the ANOVA results for the engine 

power in the two MCC designs show a 

significance level of 0.017 (Table 5). Thus, the 

two MCC designs differ significantly in 

engine power. The MCC design with Pareto 

optimization results is better in terms of 

mechanical power performance than the 

MCC design with the best CO performance, 

as shown in Table 3. 

Further analysis was carried out to reveal 

the reasons why the optimum multiobjective 

design has a superior tendency in terms of 

reducing CO emissions. One of the main 

reasons is that the optimum multiobjective 

design uses chrome-plated copper, which is  
 

Table 4. ANOVA for CO emmissions 

Source Type III Sum of Squares df Mean Square F Sig. 

MCC_Design 2.015 1 2.015 2.871 0.102 

Motorcycle_Type 54.201 2 27.101 38.625 0.000 

Rpm_Engine 37.946 8 4.743 6.76 0.000 

Error 18.243 26 0.702   
Total 887.396 54    

 

Table 5. ANOVA for engine power 

Source Type III Sum of Squares df Mean Square F Sig. 

MCC_Design 0.252 1 0.252 6.192 0.017 

Motorcycle_Type 404.412 2 202.206 4970 0.000 

Rpm_Engine 188.852 13 14.527 357.061 0.000 

Error 1.668 41 0.041   
Total 5210.74 84 

 

  
 

the second-best oxidation and reduction 

catalyst after Manganese (Mn) for transition 

metals [12]. Azri et al. [58] identified a 

sequence of several metals that are known to 

be effective as oxidation and reduction 

catalysts including Pt, Pd, Ru > Mn, Cu > Ni > 
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Fe > Cr > Zn, and the oxides of these metals. 

Supporting this, Li et al. [59] suggested that 

copper (Cu) is one of the most effective 

transition metal materials when used as a 

catalyst. 

Other facts were also found related to the 

tendency of the optimum multiobjective 

design, which excels in reducing CO 

emissions including the relatively longer 

length of the MCC tube, which is 88.1 mm 

with an indentation height of 3.5 mm, and the 

MCC tube diameter of 60.8 mm. Besides, the 

output angle of the optimum multiobjective 

design casing tends to be steeper than the 

optimum emission design. This allows the 

flue gas stream to tend to collect in the MCC 

casing area and causes increased oxidation 

activity between the MCC surface and the 

exhaust gas. 

In accordance with the results of the 

experimental tests above, we can see that 

MCC has an important role in the oxidation 

process of CO emissions. The oxidation 

process from CO to CO2 is influenced not only 

by the surface area of the MCC that is in 

contact with the exhaust gas, but also by the 

temperature factor. As we know from the 

kinetic theory of gases, the kinetic energy of 

gases is directly proportional to temperature 

[60]. As the temperature increases, the 

molecules gain energy and move faster so 

that the number of effective collisions 

increases as illustrated in Figure 9. The increase 

in the number of effective collisions is also 

directly proportional to the reaction rate [61]. 

In this case, the use of MCC plays an 

important role in the process of accelerating 

the reaction rate by lowering the activation 

energy. 

Through the use of MCC optimum 

multiobjective design, the oxidation process 

can occur faster, namely at a temperature of 

575 °C in all types of vehicles. Thus, the 

oxidation process of CO + ½ O2 emissions to 

CO2 can already be processed even though it 

occurs at a lower temperature. In the process, 

the oxidation reaction begins with the 

adsorption process (binding) of CO and CO2 

emissions on the MCC surface [62]. The O2 

molecule becomes isolated into two O atoms. 

The adsorbed O atoms and the adsorbed CO 

molecules then react on the surface of the 

MCC optimum multiobjective design to form 

CO2. Then the resulting CO2 product is 

desorbed (removed) so that CO2 emissions 

can come out of the MCC surface [63]. Thus, 

the MCC surface can carry out further 

oxidation reactions. In more detail, an 

illustration of the oxidation process of CO 

emissions can be seen in Figure 10. 

 

  
(a) (b) 

Figure 9. Kinetic energy at (a) low temperature and (b) high temperature [61] 
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Figure 10. Reaction cycle and process diagram of CO oxidation to CO2 [63] 

 

Dey & Mehta [64] explains that the rate of 

catalytic oxidation depends on the surface 

area of the catalyst. The larger the surface 

area and the more exhaust gases that are in 

contact with the catalyst surface, the more CO 

and HC emissions are oxidized to CO2 and 

H2O [60]. In this case, the use of chrome 

plated copper as MCC material is the right 

choice because this material has corrosion 

resistance and is able to withstand high 

temperatures [65]. As the temperature 

increases, the molecules gain energy and 

move faster so the number of effective 

collisions increases. The increasing number of 

effective collisions is directly proportional to 

the reaction rate [61]. In this case, the use of 

MCC plays an important role in the process 

of accelerating the reaction rate by lowering 

the activation energy so that the oxidation 

process can occur faster at a temperature of 

+500 °C. 

In terms of power, emission-optimized 

designs tend to be superior to multiobjective-

optimal designs. The optimal emission design 

gets an S/N ratio calculation value of 15.62 

while the optimum multiobjective design gets 

an S/N ratio calculation value of 15.59. This 

shows that when viewed from testing at each 

engine speed the optimum emission design 

tends to produce greater vehicle power than 

the optimum multiobjective design. The 

increase in power occurs, of course, not 

because of the MCC material, but because of 

the difference in the MCC casing design. 

The optimum emission design casing is set 

with an inlet angle of 12° with an outlet 

shrinkage of 14°, while the optimum 

multiobjective design casing is set with an 

inlet angle of 12° and an outlet angle of 22°. 

Referring to the two casing designs, it is 

known that the outlet angle of the optimum 

multiobjective design casing tends to be 

steeper when compared to the optimum 

emission design casing. In accordance with 

the theory proposed by Bell [19], it is known 

that the outlet angle which tends to be steeper 

(22°) allows the exhaust gas flow to be 

obstructed and collected in the MCC casing 

area. Moreover, the turbulence that occurs 

tends to be large and causes the exhaust gas 

to lose flow [66]. 

This condition certainly causes an increase 

in exhaust gas pressure which leads back to 

the combustion chamber when overlapping. 

This has an impact on the decreasing power 

of the vehicle because the exhaust gases 

cannot freely exit the environment. 

Furthermore, to prove this, the back pressure 

measurement is carried out in the exhaust. 

The results show that the back pressure 
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generated by the optimum emission design is 

0.52 kPa, while the back pressure generated 

by the optimum multiobjective design tends 

to be lower at 0.41 kPa. 

 

4. Conclusion 

From this study, the pattern of previous 

research data is used to predict the best 

design of MCC by ANN-MOGA. The design 

variables are material, indentation height, 

diameter, length, angle in, and angle out of 

the MCC. Based on the data and coding, the 

optimum emission design and optimum 

multiobjective design were found. The 

verification results show that the optimum 

multiobjective tends to be superior both in 

terms of CO emissions and engine power. The 

optimum multiobjective design produces 

lower CO emissions with an S/N ratio value 

of -10.98, while the optimum emission design 

produces CO emissions with an S/N ratio 

value of -11.21. Meanwhile, in terms of 

vehicle power, the optimum multiobjective 

design produces greater vehicle power with 

an S/N ratio value of 16.13, while the 

optimum emission design produces vehicle 

power with an S/N ratio value of 15.86. It is in 

line with the results of the ANOVA test which 

shows that the optimum multiobjective 

design is proven to be better than the 

optimum emission design. 
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