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The effectiveness of a vehicle crash system depends on how well it can simulate the behavior 

of a real vehicle in a crash scenario and accurately identifies the correct working limits of the 

model parameters, including mass, spring, and damper. Therefore, this study explores the 

modelling vehicle front crumple zone to represent the behaviors of real crash scenario. The 

modelling process using Kamal approach is used to develop a precise vehicle crash model for 

analyzing the impact of a collision on both the vehicle and its passengers. In this study, a 

complex mass-spring-damper system representing the front crumple zone of an actual car is 

re-designed to modify the existing vehicle crash model. The gravitational search algorithm 

(GSA) is implemented in the simulation model's code to obtain optimized values of damping 

coefficient (c) and spring constant (k). The simulation results show that the deformation 

response of crumple zone and the deceleration response of vehicle body match the 

experimental results, indicating the model's accuracy. Additionally, this study investigates the 

effects of varying the GSA parameters number of agents (N), the beta parameter (β), and the 

gravitational constant (G) to improve the model's accuracy by minimizing the root mean 

square error (RMSE) between model response and crash test data. The optimal GSA parameter 

chosen in this study were N = 50, β = 0.3 and G = 20 with the lowest RMSE of 22.3874, 22.26664 

and 23.86638 respectively.  

Keywords: Crumple zone; Vehicle crash simulation; Modified Kamal model; Gravitational 

search algorithm 

1. Introduction 

The media frequently reports on the serious 

injuries or fatalities that occur as a result of head-

on collisions. These types of collisions often cause 

significant damage to the car body that cannot be 

repaired [1]. To better understand the impact of 

frontal collisions on both the vehicle and its 

occupants, researchers have developed a 

mathematical model of the vehicle system. This 

crash model involves replicating both the 

deformable and non-deformable components of 

the car into a spring-mass-damper system, which 

is commonly referred to as a lumped parameter 

model [2]. By using this model, researchers can 

analyze how the vehicle and its occupants behave 

during a collision, and how the vehicle's 

components deform and transfer energy during 

impact [3]. 

Fekry et al. [4] proposed a novel approach to 

minimize the impact of collisions on vehicles by 

using a smart front-end structure. This approach 

considers both full and offset frontal collisions 

between smart and standard vehicles. To model 

the plastic deformation of the vehicle's 

components, the authors used longitudinal 

members such as spring elements to produce 

linear and cubic non-linear stiffness coefficients. 

The hydraulic cylinders were represented by 
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linear and cubic non-linear damping coefficients, 

while the passenger and occupant compartment 

were represented by lumped masses. To 

determine the dynamic response, deformation, 

and deceleration of the vehicle and its occupants, 

an incremental harmonic balance method was 

employed to solve the multi-degree-of-freedom 

systems in the model [5]. The simulation results 

demonstrated that the proposed model could 

reduce intrusion while keeping occupant 

deceleration within the desired limit. 

Ofochebe et al. [6] proposed the use of data-

driven regression in mathematical modeling and 

analysis of car crashes. Their model simulated car-

to-pole collisions using the Kelvin model with a 

viscoelastic element, where the combined mass, 

spring, and damper that represent the vehicle 

behavior were connected in parallel. The 

researchers divided the front part of the car into 

six components, each determined based on the 

car's actual specifications. The car mass was set to 

1000 kg, and the spring stiffness and damping 

coefficient values were assigned using a trial-and-

error method based on vehicle crash mechanics 

tests. This model was able to verify full-scale crash 

tests for various scenarios, including low-speed, 

high-speed, and side impacts [7]. 

The mathematical model used a double-

spring-mass-damper system that divides the car 

structure into two parts, with the vehicle chassis 

representing the front mass and the passenger 

compartment the rear mass. Due to the complexity 

of the system equation, it was not possible to 

derive the physical spring damper parameters of 

the model. As a result, Munyazikwiye et al. [8] 

utilized finite element model and the piecewise 

lumped parameter (LMP) to simplify and estimate 

the model parameters. This model can represent a 

real vehicle crash scenario as long as the 

conditions for each mass are met. 

Elkady et al. [9] developed a six-degree-of-

freedom mathematical model for simulating full 

high-speed collisions and offset front crashes. The 

model was based on Kamal's study of a simple 

mass-spring model, which represents the vehicle 

body as a lumped mass and the suspension 

system as four units of springs and dampers that 

absorb crash energy. The authors improved the 

model by co-simulating the vehicle dynamics 

control systems (VDCS), including the anti-lock 

braking system (ABS) and active suspension 

control system (AS), to control vehicle 

deformations. 

The contribution of this study is to further 

improve the existing Kamal vehicle crash model 

for analyzing the car body during front collisions. 

The model is a complex mass-spring-damper 

system that represents the front crumple zone of 

the vehicle. The c and k parameters for the 

compartments were obtained from the actual 

vehicle system. The model was validated through 

simulation in MATLAB-Simulink, where the 

optimized c and k parameters were obtained using 

the Gravitational Search Algorithm (GSA) and 

compared with the experimental results from Real 

Crash Test Data (RCTD) [10]. To enhance the 

deformation response, the study varied the 

parameters in the GSA coding, including the 

number of agents (N), the beta parameter (β), and 

the gravitational constant (G). The paper 

contributes to determining the vehicle kinematics 

using a mass-spring-damper system that 

estimates the effect of primary and secondary 

impacts in crash collisions. It also suggests 

potential countermeasures to resolve the problem, 

such as developing a control system or using 

materials such as magnetorheological elastomer 

(MRE) to absorb the impact on the front bumper. 

Other related studies that have explored these 

solutions include Archakam and Muthuswamy 

[11] and Rahmat et al. [12]. 

The structure of this paper is as follows. The 

first section provides an overview of the project's 

objectives, which aimed to develop a vehicle crash 

model and validate the simulation model using 

the GSA optimization method. The second section 

provides a detailed explanation of the method 

used in the Kamal model and the approach 

adopted in this study. Section three introduces the 

role played by GSA in optimizing the c and k 

parameters of the model. Section four discusses 

the simulation results, and the final section 

presents the findings of the study and concludes 

the paper. 

 

2. Six-Degree-of-Freedom Vehicle Crash 

Model 

The Kamal model is a vehicle crash model that 

combines analytical and experimental techniques 

through three approaches: a computer simulation 

program for barrier impact, a vehicle component 

crusher, and a mathematical model that 
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represents the vehicle body [13]. The experimental 

data used to develop the Kamal model were 

collected in a designated test, where a stationary 

car collided with a barrier at speeds ranging from 

0 to 30 mph, with a predetermined amount of 

force. The collision resulted in identifying the 

parts of the vehicle that sustained light or heavy 

damage. The output from the frontal impact was 

analyzed in terms of vehicle motion, body 

deformation, and the dynamic forces transmitted 

to the passenger compartment through 

simulations carried out on the model. Figure 1 

illustrates the complete barrier impact simulation 

model, which includes three lumped masses 

representing crucial parts of the vehicle, namely 

the body, engine, and cross-members, along with 

eight nonlinear resistances as shown in Figure 2. 

 

2.1. Modified Kamal Model 

This study develops a modified Kamal model 

(MKM) with six degrees of freedom which adopts 

the previously proposed model, namely Kamal 

model due to it detail representation for crumple 

zone using mass-spring-damper system which 

makes it function exactly as an actual car used in 

our daily life. A minor adjustment was made to 

the mathematical modeling for the front collision, 

considering the positioning of the spring and 

damper elements in the model, which can impact 

the performance of the vehicle crash model. 

Previous studies by Pawlus et al. [14] and Radu et 

al. [15] have demonstrated that the Maxwell 

model, where the spring-damper elements are 

connected in series, produces a response similar to 

actual car crash data. Therefore, the modified 

Kamal model in this study considers six lumped 

masses representing different vehicle parts, 

connected by ten springs and four dampers 

arranged in parallel, as shown in Figure 3. This 

modeling process is based on observations of the 

front crumple zone of an actual vehicle system, 

considering the parts of the car that are affected in 

a front collision. This approach is expected to yield 

improved results as it captures the precise 

behavior of the vehicle collision [16]. 

 

 
Figure 1. Mathematical model of a barrier impact [13] 

 

 
Figure 2. The dynamic forces acting on the front crumple zone [13] 
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2.2. Equations of Motion of the Modified Kamal 

Model  

The mathematical model of the modified 

Kamal model is shown in Figure 3. The derivation 

for Mass 1 using Lagrange formulation based on 

the kinetic (T), dissipative (Q), and potential (V) 

energies of the mass, spring, and damper as in Eq. 

(1), Eq. (2), and Eq. (3). The product of 

differentiation for kinetic with respect to �̇�1  and 

𝑥1, dissipative, and potential energies for Mass 1 

given by Eq. (4), to Eq. (7) respectively. 

Eq. (8) is the general equation for the Lagrange 

formulation consisting of kinetic, dissipative and 

potential energies. The derivation of each energy 

are written in Eq. (9) the final acceleration for 

Mass 1 was derived as follows. 

Final acceleration formulation of the vehicle 

body is written as Eq. (10). The derivation of the 

final acceleration equations for Mass 2, 3, 4, 5, and 

6 are similar to Mass 1 and used the respective 

forces for the masses as presented in Eq. (11) to Eq. 

(15). 

 

 
Figure 3. Free-body diagram of the crumple zone modeling 
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3. Development of Modified Kamal Model 

in MATLAB Simulink 

This section describes the methodology for 

selecting the optimal values of c and k using a 

combination of the modified Kamal model 

simulation results and optimization using GSA. 

The vehicle crash model was implemented in 

MATLAB 2014, utilizing the Lagrange equation 

for six lumped masses, which were represented as 

a block diagram. The inputs to each lumped mass 

were the displacement (x), velocity ( �̇� ), and 

acceleration (�̈�) of the spring (𝐹𝑠) and damper (𝐹𝑑) 

forces. Figure 4 illustrates the simplified 

arrangement of this model, with the collision force 

(𝐹𝑐𝑜𝑙𝑙) as the output. 

 

3.1. Simulation Parameters 

The model configuration parameters for the 

solver in MATLAB-Simulink were adjusted based 

on a fixed-step size of 0.001 using the ODE8 

(Dormand-Prince) method. The GSA coding 

simulation was then executed for 0.5 seconds in 

the editor. 

3.2. Vehicle Parameters 

The c and k parameters for the six lumped 

masses were obtained from the estimated 

standard vehicle specification and the Kelvin 

model data [17]. These parameters were then 

inputted into the workspace and are presented in 

Table 1 for reference. 

 

4. Optimization of the Six-Degree-of-

Freedom Modified Kamal model using 

Gravitational Search Algorithm (GSA) 

After developing the model, the next step is to 

optimize the parameters for the Modified Kamal 

model (MKM). There are several methods 

available for optimizing the parameters of 

developed models, such as genetic algorithm 

(GA), particle swarm optimization (PSO) and ant 

colony optimization (ACO) [18]. The gravitational 

search algorithm (GSA) developed by Rashedi et 

al. [19] is a more recent heuristic algorithm used 

for data optimization. It involves a set of agents, 

also known as masses, and incorporates 

gravitational law and Newton's law of motion in 

 

 
Figure 4. Schematic diagram of the modified Kamal model 
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the coding to obtain an optimal result with a 

flexible implementation concept. GSA follows a 

similar approach to PSO, where data optimization 

is achieved through the agents' abilities to explore 

and exploit the search space. However, their 

movement strategies differ [20], [21]. 

In this study, GSA was chosen over other 

methods due to its effectiveness of optimization 

algorithms that can vary the parameters of spring 

constant and damping coefficient in Modified 

Kamal model based on specific cases. The 

optimized Modified Kamal model parameters can 

closely represent the vehicle collision scenario. 

Here, the lower boundary (LB) and upper 

boundary (UB) for the coding were determined 

based on estimated parameters for an actual 

vehicle. The simulation output was then refined in 

terms of deformation response by adjusting the 

parameters in GSA iteratively until the simulation 

output matched the desired response, which was 

obtained from experimental results of Real Crash 

Test Data (RCTD), thus validating the 

effectiveness of this method using the Root Mean 

Square Error (RMSE). GSA was used to explore 

the impact of varying the number of agents (𝑁), 

beta parameter (𝛽), and gravitational constant (𝐺) 

on the overall optimization results, with the aim 

of improving the final outcomes. 

 

4.1. Effects of Varying the Number of Agents (N) 

The parameter N, representing the number of 

agents, stands as a pivotal configuration within 

the GSA framework. Its determination is typically 

achieved through empirical exploration across 

diverse applications and remains fixed 

throughout the algorithm's execution. In this 

study, N was systematically adjusted in four 

distinct scenarios: 20, 30, 40, and 50. These values 

were subsequently compared against the 

deformation response. 

Illustrated in Figure 5 is the RMSE graph, 

unveiling a discernible pattern wherein 

augmenting the count of agents correlates with 

diminished simulation errors. This observation 

contrasts with the approach advocated by Rashedi 

et al., wherein diminishing agent numbers over 

time was projected to yield reduced errors due to 

heightened efficacy in surveying and exploiting 

the search landscape. 

  
Table 1. Initial spring-mass-damper parameters 

Mass 

[kg] 

𝑚1 900 

𝑚2 120 

𝑚3 50 

𝑚4 180 

𝑚5 40 

𝑚6 45 

Damper 

[kNs/m] 

𝑐1 2.3 

𝑐2 230 

𝑐3 25 

𝑐4 2.1 

Spring 

[kN/m] 

𝑘1 20 

𝑘2 120 

𝑘3 25 

𝑘4 25 

𝑘5 25 

𝑘6 100 

𝑘7 25 

𝑘8 25 

𝑘9 25 

𝑘10 100 
 

 

 
Figure 5. The outcome of varying the number of agents, N: (a) Deformation; and (b) Root means square error 
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In the context of this study, the preferred agent 

count was identified as 20, given its notable 

convergence velocity in contrast to the others. 

However, upon consulting Table 2 showcasing 

outcomes delineating the optimal agent count, a 

counterintuitive decision was made. Specifically, 

N = 50 emerged as the favored choice for optimal 

agent count, substantiated by its remarkably low 

error rate of 22.38764. Furthermore, the 

deformation trend closely aligns with Real Crash 

Test Data, bolstering the selection of N = 50 as the 

most favorable configuration. 

 
4.2. Effects of Varying Beta Parameters (β) 

Figure 6 illustrates a notable observation: when 

the parameter 𝛽 is set to 0.3, the Root Mean Square 

Error (RMSE), as described by Eq (16) pertaining 

to the gravitational constant, reaches its minimum 

value. This figure provides insight into the 

relationship between 𝛽 and 𝐺, demonstrating a 

direct proportionality between the two while 

ensuring that 𝛽 remains below the threshold of 1. 

The gravitational constant, denoted as G , 

assumes a crucial role in the initial stages of the 

coding process, influencing search accuracy and 

computation time. This dependence stems from 

its reliance on both the initial value (𝐺0) and time 

(t), as represented by Eq (17). 
 

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0

𝑡
)

𝛽

, β < 1 (16) 

  

𝐺(𝑡) = 𝐺(𝐺0, 𝑡) (17) 
 

 
Table 2. The optimized parameters for all number of agents 

Optimized parameter 

𝑐1 35.353 34.3826 33.2769 37.9628 

𝑐2 6.2926 9.6909 5.5357 8.6283 

𝑐3 40.7702 35.6913 34.9706 32.1876 

𝑐4 7.5913 6.87 9.9752 5.3416 

𝑘1 15.9686 13.2289 10.3059 13.4737 

𝑘2 46.8022 50.6895 55.118 48.3042 

𝑘3 60.2166 76.082 77.1763 79.0514 

𝑘4 3.3638 5.8527 4.3144 1.253 

𝑘5 1 5.6294 4.0542 4.3127 

𝑘6 5.9605 4.6083 6.2977 7.1643 

𝑘7 22.2546 32.4851 33.256 30.5722 

𝑘8 5.3428 5.3541 8.1197 5.5551 

𝑘9 3.3315 6.3604 1.016 5.1282 

𝑘10 4.8553 6.7871 1.597 1.2252 

Optimized result 

𝑁 20 30 40 50 

𝑅𝑀𝑆𝐸 24.0972 42.0905 23.0275 22.3874 

 

 
Figure 6. The outcome of varying the beta parameter, 𝛽: (a) Deformation; and (b) Root means square error 
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An intriguing finding emerges: the optimal 

value for the beta parameter is 𝛽 = 0.3. This choice 

is supported by the data presented in Table 3, 

showcasing the lowest root mean square error. 

Moreover, the convergence rate of this optimal 

beta parameter is noteworthy, rivaling that of the 

beta parameter set at 0.4. 

 

4.3. Effects of Varying Gravitational Constants 

(G) 

Newton's law of gravity establishes that the 

gravitational force acting between two particles is 

directly proportional to the product of their 

masses, represented as 𝑀1 and 𝑀2, and inversely 

proportional to the square of the distance 

separating them, denoted as 𝑅. This fundamental 

relationship is formally expressed in Equation 18. 

 

𝐹 = 𝐺
𝑀1 𝑀2

𝑅2
 (18) 

 

Consequently, the efficacy of the Gravitational 

Search Algorithm (GSA) hinges upon the 

gravitational constant 𝐺(𝑡) , which serves as a 

pivotal factor governing the step size for an 

agent's movement. The dynamic behavior of 𝐺(𝑡) 

follows an exponential decay pattern across 

iterations, holding 𝐺0  as a constant during the 

entirety of the search process. 

The selection of the optimal gravitational 

constant G is influenced by empirical analysis, as 

outlined in Table 4. Through careful evaluation, G 

= 10 emerged as the optimal choice for the 

gravitational constant. This selection is justified by 

its ability to yield the lowest Root Mean Square 

Error (RMSE) value of 23.86638. Notably, this 

optimal constant concurrently preserves a close 

alignment with the acceleration response of the 

Real Crash Test Data (RCTD) curve, as vividly 

depicted in Figure 7. 

 

4.4. Simulation Results of the Optimized 

Parameters 

The developed 6-DOF Modified Kamal model 

(MKM) was input with the optimized spring 

stiffness and damping coefficient values. The 

simulation utilized the optimized parameters 

from Table 5 and compared the acceleration and 

deformation responses with the published 

experimental results from Real Crash Test Data 

(RCTD) obtained from [10] followed by Elkady 

and Elmarakbi model (E&E) and ADAMS 

multibody model (ADAMS) according to Figure 

10. A performance indicator, RMSE, was used to 

assess the validity of the developed model, with 

the selected GSA parameters 𝑁 = 50, 𝛽 = 0.3, and 𝐺 

= 20. The simulation results demonstrated that the 

simulated values closely matched the 

experimental data, with an RMSE of 23.86638 

(Figure 8). 

In order to verify the effectiveness of the 

developed Modified Kamal Model (MKM), its  

acceleration is compared with the response 

obtained from original Kamal Model (KM). Here,  

 
Table 3. The optimized data for all bheta parameters 

Optimized parameter 

𝑐1 35.0573 36.6276 37.0354 34.4179 

𝑐2 7.0951 5.9284 6.7428 5.9158 

𝑐3 31.9851 31.479 31.6201 32.029 

𝑐4 8.1994 5.2863 6.9712 7.9373 

𝑘1 10 10 11.0005 22.5809 

𝑘2 48.786 45.8902 39.1803 41.5241 

𝑘3 82.8509 79.1433 78.5861 80.5374 

𝑘4 4.3846 6.4879 2.6912 1 

𝑘5 1.0124 6.7884 3.9491 1 

𝑘6 5.7237 6.2898 9.6813 6.2481 

𝑘7 28.4113 29.3615 32.5832 31.6644 

𝑘8 4.9425 4.1405 3.1402 5.9 

𝑘9 5.7758 5.4877 1.0566 4.8 

𝑘10 3.5671 3.8815 4.8459 4.644 

Optimized result 

𝛽 0.1 0.2 0.3 0.4 

𝑅𝑀𝑆𝐸 22.86615 30.25327 22.26664 29.23913 
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Table 4. The optimized data for all gravitational constants 

Optimized parameter 

𝑐1 36.2674 37.3939 37.2959 34.2642 

𝑐2 7.11 5.9434 5.4186 7.108 

𝑐3 33.1669 34.2822 30.0933 33.7686 

𝑐4 5.9277 5.5921 5.6399 7.849 

𝑘1 25.7277 10 10.0002 19.0149 

𝑘2 40.8918 38.5364 43.2798 43.5607 

𝑘3 86.8623 82.1257 78.0412 78.4224 

𝑘4 4.8958 5.3765 4.856 5.6677 

𝑘5 1.0907 1.2006 5.5963 1 

𝑘6 6.2669 6.6671 5.8774 5.9052 

𝑘7 28.6827 34.4504 36.7404 31.1119 

𝑘8 6.1519 5.8199 5.0808 3.5213 

𝑘9 1.5821 4.1076 1.0057 4.7754 

𝑘10 1 5.2167 4.5166 5.6777 

Optimized result 

𝐺 10 20 30 40 

𝑅𝑀𝑆𝐸 33.97027 23.86638 24.87571 31.20340 

 

 
Figure 7. The outcome of varying the gravitational constant, G: (a) Deformation; and (b) Root means square error 

 

 
Figure 8. The optimum model parameters: (a) Deformation; and (b) Root means square error 
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the modelling approaches of both KM and MKM 

that have been explained in Sections 2 and 2.1 are 

then evaluated to see the advantage of the MKM 

in tracking the response obtained from the actual 

experimental data as presented in Figure 9. It can 

be seen from the result that the acceleration 

response of MKM is able to closely follow the 

experimental data in terms of trend and 

magnitude. However, the response obtain from 

KM shows the magnitude is less than the 

experimental data and produces inconsistent 

trend. This clearly shows that the developed 

MKM, with considering all aspects related to an 

actual vehicle component is able to represent an 

actual crash response. 

 
Table 5. The optimal c and k values 

Damper 

[kNs/m] 

𝑐1 37.3939 

𝑐2 5.9434 

𝑐3 34.2822 

𝑐4 5.5921 

Spring 

[kN/m] 

𝑘1 10 

𝑘2 38.5364 

𝑘3 82.1257 

𝑘4 5.3765 

𝑘5 1.2006 

𝑘6 6.6671 

𝑘7 34.4504 

𝑘8 5.8199 

𝑘9 4.1076 

𝑘10 5.2167 

Furthermore, MKM was compared with the 

simulation works from E&E and ADAMS model 

while maintaining RCTD as the benchmark for the 

overall results. Figure 10 shows that there was a 

good agreement between the experimental results 

and MKM in terms of acceleration and 

deformation response compared to other 

simulation models. This clearly demonstrates that 

the suggested model has the capacity to deliver 

accurate results that are as close as possible to the 

benchmark while preserving minimal error as 

presented in Table 6. 

 

 
Figure 9. Acceleration responses of original Kamal and 

modified Kamal models 

 

 
Figure 10. Comparison with others model: (a) Acceleration; and (b) Deformation 

 
Table 6. The maximum percentage error for each model 

Simulation model Acceleration (m/s2) Percentage error (%) Deformation (m) Percentage error (%) 

E & E 317.73 5.8749 0.67136 12.3585 

ADAMS 267.704 25.6598 0.73025 3.2975 

MKM 338.4246 0.5993 0.7536 0.09687 
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5. Conclusion 

This study presents a novel vehicle crash 

model that utilizes a mass-spring-damper system 

to accurately represent the various components of 

a vehicle body in order to analyze the impact of 

collisions on the front bumper. The proposed 

model's c and k parameters are optimized using 

the gravitational search algorithm (GSA). The 

model is based on the Kamal study, which utilized 

a six-degree-of-freedom (6-DOF) mathematical 

model, and its performance is compared with 

experimental data on vehicle body deformation. 

To enhance the simulation results, three important 

parameters in the GSA, namely the number of 

agents (N), the beta parameter ( 𝛽 ), and the 

gravitational constant (G), are varied. The optimal 

damping coefficient and spring constant, are 

determined by selecting the positive value of 

vehicle parameters with minimum error. The 

optimized parameters are then used in the 

developed crumple zone model. In order to verify 

the crumple zone modelling, the proposed model 

was compared with other simulation models 

namely, Elkady & Elmarakbi model and ADAMS 

model. The modified Kamal model showed good 

agreement with the real crash test data obtained 

from the previous work, with a maximum 

percentage error of 0.5993% for acceleration 

response and 0.09687% for deformation response. 

The findings of this study demonstrate that 

varying these three parameters significantly 

improves the simulation output by minimizing 

errors and closely fitting the experimental data, 

thus validating the effectiveness of the proposed 

model. 
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