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Identification of road profiles is needed to provide the input of automotive simulation and 

endurance testing. The analysis with estimation methods is mostly done to identify road 

profiles. The main goal of analysis methods is to obtain the data of vertical displacements due 

to road profile measurement. The acceleration data is obtained from measuring road profile 

by using 4 sensors of accelerometer placed on each car wheel.  The measuring data is converted 

to be vertical displacement data by using a "double integrator", however, it is not easy to get 

accurate results since the signal obtained carries a lot of noise and it is necessary to design the 

right filter reduce the noise. In this study, the signal filtering methods reducing the noise were 

used Fast Fourier Transform (FFT) and Kalman Filter (KF) combination. Experiments were 

carried out by combining Fast Fourier Transform and Kalman Filters using an input signal 

with unit (volt) in the time domain. In addition, this research focused on preparing the survey 

data that has been obtained by eliminating the noise to convert becoming the displacement 

input data for providing the loads of automotive simulation testing. 

Keywords: Road profiles; Acceleration data; Fast fourier transform; Kalman filter 

1. Introduction 

Vehicle mobility is without doubt a key 

element of the transportation system. High 

vehicle mobility must be supported by good road 

infrastructure, because this affects travel time and 

one of the road infrastructures that often suffers 

damage is the road profile [1]–[3]. The roughness 

of the road profile causes a number of problems 

for road users such as unsafe conditions for 

drivers, resulting in deteriorating dynamic 

conditions for large vehicles such as trucks or 

other heavy vehicles, and can damage the vehicles 

and goods being transported. One possibility that 

causes the road to experience high levels of 

roughness is segregation which affects pavement 

performance [4], [5].  A good road surface can 

provide safety and comfort for road users. It also 

reduces the number of car accidents and improves 

transportation safety. The quality of the road has 

become an important concern, in which, among 

various indicators of road quality, the road 

roughness is one of the most important road 

parameter [6]–[8]. While road surveys are 

necessary to obtain road data and maintain road 

quality, there are several different methods and 

tools for evaluating and characterizing road 

profiles. Accelerometers are one of the important 

devices for assessing the types of vibration modes 

including forced reaction systems [9], [10]. The 

surface road measurement includes determining 

the designated operational road of the vehicle, 

collecting the surface road data, and processing or 

preparing the data to be converted into the 

loading program for shaker test (Figure 1). The 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/index
http://creativecommons.org/licenses/by-nc/4.0/
mailto:djok001@brin.go.id
https://doi.org/10.31603/ae.9901
https://crossmark.crossref.org/dialog/?doi=10.31603/ae.9901&domain=pdf&date_stamp=2023-11-24


© Djoko Wahyu Karmiadji et al. 

Automotive Experiences  585 
 

sample load profile representing the displacement 

of four vehicle wheels given during the simulation 

test can be seen in Figure 2. 

To measure the dynamic effect of the road on 

the car (i.e.: suspension – axle – unsprung mass 

and/or car body springs) can be carried out by 

using different measuring devices such as 

accelerometers, speed or displacement measuring 

devices or height laser/infrared/ ultrasonic speed 

sensing devices. These measuring equipment are 

applied to compile the vertical irregularity data of 

the road surfaces or the geometric parameters of 

the pavement by using a high-precision 

measuring and surveying system [11]–[13]. The 

analysis method in carrying out a combination of 

filter to filter of the input signal with unit value of 

volts from experimental road profile data should 

be converted into the displacements. Analysis of 

the signal and its associated frequency is the most 

important step to identify the nature of the signal. 

Signals are generally consisted of four types, 

namely linear signals, non-linear signals, 

stationary signals, and non-stationary signals [14]. 

Many related studies have been carried out to  

 

 
Figure 1. Simulation road test 

 

 
Figure 2. Sample load file (displacement vs point, DFHST4) 
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obtain the displacements using a Finite Impulse 

Response (FIR) filter to correct numerical 

integration and an Infinite Impulse Response (IIR) 

to process the frequency domain [15], [16]. In 

general, FIR and IIR can pass certain frequencies 

and noise clearly. In fact, it is very difficult to 

determine the perfect filter, therefore in this study 

trials were carried out with a combination of Fast 

Fourier Transform and Kalman Filters to perform 

noise separation and correct the velocity and 

displacement results [17]–[19]. 

Fast Fourier Transform (FFT) and Kalman 

Filter (KF) cannot filter to separate such filters as 

low, high, and band pass filters, however, FFT and 

KF have the ability to do filtering. The combined 

process of FFT and KF will be tested in this study 

to find out the results of road profile data analysis. 

The study goal is to analyze surface roughness 

road profile data using filter combinations 

determining the ability to solve the conversion 

problem from the measurement data becoming 

the displacements. The research focuses on the 

data from the road surface roughness 

measurements and the process for analyzing data 

using a combination of filters.  

 

2. Related Works 

Research related to simulate randomized 

longitudinal road profiles is widely used for 

various vibration analyzes of mechanical and civil 

structures. Common examples of the use of such 

simulations to evaluate vehicle vibration 

responses include optimizing vehicle or seat 

suspension, estimating energy harvesting and 

regeneration in vehicle suspension, to evaluate 

dynamic loads. sidewalks or vehicles [20]. Many 

research papers have investigated how classifying 

the road profiles accurately based on the 

classification through the number of axles and 

vehicle body. The acceleration data from various 

simulated dynamic vehicle-road scenarios by 

using accelerometers is a result data from 

measuring the vehicle's response to the road 

surface which is to be collected and stored as the 

acceleration measurement data for estimating 

average road profile conditions [21]–[23]. 

Information raw data is used to generate road 

surface classification by using two approaches, 

namely active and passive sensing. Active sensing 

sensors interact with the environment to generate 

data by using ultrasonic sensors, laser scanning, 

sonar and radar. The passive sensing has no active 

interaction with the environment and the data 

obtained by physical or visual are passive samples 

using camera and inertial sensors [24]–[26]. There 

are various methods and tools for measuring road 

surface characteristics which can be divided into 

three categories: system response base estimation, 

direct measurement, and non-contact 

measurement [27]. 

Some studies to measure the dynamic response 

of automotive structures employed 

accelerometers. This acceleration data is most 

often used to estimate speed and displacement. 

Velocity is an integral of acceleration, while 

displacement is an integral of velocity. Numerical 

methods allow obtaining results as discrete 

functions by integration. Direct integration of 

acceleration often results in unrealistic deviations 

in velocity and displacement, however, it is 

undoubtedly the most appropriate and most cost-

effective way to get a converted data [28]–[30]. In 

this study, measuring dynamic automotive on 

road profile was used the accelerometers located 

on each wheel, and the collected measurement 

data was created at the survey location between 

Ciawi - Cisarua Puncak (10 km), Indonesia, as 

shown in Figure 3. Sample raw data of 

measurement is shown in Figure 4. 

Various methods have been carried out to 

determine road roughness, such as the concept of 

an algebraic estimator to reconstruct a road profile 

with a minimum number of sensors, in which the 

algorithm only requires sprung and unsprung 

mass acceleration data. In addition to identify 

road profiles can be done by characterizing road 

excitation using independent component analysis 

(ICA). The method can reconstruct the original 

excitation source using physically measured 

signals from the system under this study. 

Therefore, the estimated road disturbance is 

considered as an output source and is identified 

from the dynamic response of the vehicle. These 

responses could include simple filters of a moving 

average or complicated mathematical 

transformations such as various Fourier and 

Wavelet transforms and simulated numerically 

using the Newmark method [31], [32]. The 

method for separating noise is done by using a 

modified discrete Fourier transform to filter noise 

and makes reductions on the data while keeping 

the trend of the global movement of the time series
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Figure 3. Survey location between Ciawi - Cisarua Puncak (10 km) in West Java, Indonesia 

 

 
Figure 4. Sample raw measurement data 

 

A promising method is a technique that performs 

data reduction, and then uses a spatial access 

method to index the data in the transformation 

space. The technique included the discrete Fourier 

transform (DFT) which was introduced in the 

study [33]. 

 

3. Methodology 

The methodology for analyzing road profile 

data with a combination of filters was started by 

analyzing raw data obtained from the results of 

road profile survey by using 4 accelerometer 

sensors mounted on all four vehicle wheels. Data 

captured by the accelerometer sensor in volts was 

then converted into m/s2 with equivalent 

conversion (1G = 0.002 Volts). The resampling of 

raw data was done to simplify data processing. In 

this study, down sampling was carried out, from 

one million rows by using the aggregate average 

in each 2000 row of data to 512 row data. The 

resampling data is shown in Figure 5, in which the 

vertical axis is acceleration in m/s2 and the 

horizontal axis is data numbers. 

Fast Fourier Transform (FFT) is a method to 

speed up calculation time. This is compared by 

using the Discrete Fourier Transform, where 

datasets in the time domain are converted into the 

frequency domain. In this study, the use of FFT 

aims to reduce noise that occurs when 

measurements are taken, and the choice of this 

method is due to its ease of use and accurate 

results. By using the FFT method, the calculation 

process is begun with converting 512 data values 

in units of volts into m/s2, where 1G = 0.002 volts. 
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The next stage is to process filtering 

accelerometer data by FFT, then to integrate the 

accelerations to get speed results [34]–[37]. To give 

confidence in the accuracy of the speed values, the 

results data is treated by using the Kalman Filter 

to get an estimation of the speed values 

approaching the actual values. Then, the output of 

Kalman Filter is integrated to become the 

displacement data values. The process 

transforming raw acceleration measuring data 

converted to be the displacement road profile 

simulation data by using FFT dan Kalman Filter is 

shown in flowchart diagram Figure 6. 

As an illustration of the FTT process in Figure 

6, the acceleration data should be examined into 

two, namely even data and odd data, and 

formulated as Eq (1) [34]. Calculations were made 

on 512 data using FFT through the W matrix (256 

x 256) for odd and even parts. The calculation 

results of FFT are complex numbers, and as an 

illustrative example from Figure 5 wheel 1, for k = 

1 by resampling the initial data 162.888, the 

calculation result is a complex number of -218,907 

- j1599,802. While the magnitude of the complex 

number is 1614.71. Calculations are continued for 

all data (i.e., 512 data). 

 

 
Figure 5. Resampling acceleration data 

 

 
Figure 6. Processing Transformation Flowchart from row acceleration data to displacement data 
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In the FFT process Figure 6, the frequency 

domain of the output of FFT process is the 

complex number value(𝑎 +  𝑗 𝑏), namely step 1. 

Then, step 2 the format complex number is 

modified to be magnitude and phase form, i.e., 

magnitude 𝐴 = √(𝑎2 + 𝑏2)  and phase angle 𝜃 =

 tan−1(𝑎 𝑏⁄ ). And step 3 the process continues to 

inverse FFT calculation, so that the result value is 

returned to the time domain as the same format of 

initial data.  

The acceleration data (a) can be converted to 

the velocity data (v) by using the following 

integral Eq (2): 

 

𝑣 =  ∫ 𝑎 𝑑𝑡
𝑡

1

 (2) 

 

Second filter to remove the noise of velocity 

data is done by using Kalman Filter [38]–[40]. The 

data processed in the Kalman Filter is the velocity 

data as the integration result of acceleration data. 

In contrast to the FFT, the Kalman Filter is applied 

to eliminate the noise and improve the velocity 

result data approaching the actual values. To 

implement the Kalman Filter, it is initiated by 

defining data variables such as the velocity data. 

The variable state transition model is assumed 

that the relative velocities in between constant 

measurements are developed from time to time. 

The velocity can be expressed as 𝑣(𝑘)  =  𝑣(𝑘 − 1), 

where 𝑣(𝑘)  is velocity at time k  and 𝑣(𝑘 − 1)  is 

velocity at the previous time.  The measurement 

model related to velocity variable is 𝑧(𝑘)  =  𝑣(𝑘), 

where 𝑧(𝑘)  represents the measured velocity at 

time 𝑘. The initial values are assumed 𝑥(0) =  4.0, 

error covariance matrix 𝑃(0) and noise covariance 

𝑅. 

For each measurement data at time 𝑘, the steps 

taken should be distinguished as following state 

parameters: 

a. State prediction: 

𝑥(𝑘|𝑘 − 1)  =  𝑥(𝑘 − 1) (3) 

b. State prediction: 

𝑃(𝑘|𝑘 − 1)  =  𝑃(𝑘 − 1) (4) 

 
c. State update Kalman Filter Gain: 

𝐾(𝑘)  =  𝑃(𝑘|𝑘 − 1) / (𝑃(𝑘|𝑘 − 1) +  𝑅) (5) 

where R is measurement noise covariance 

 
d. State update Estimation: 

𝑥(𝑘|𝑘)  =  𝑥(𝑘|𝑘 − 1) +  𝐾(𝑘) ∗  (𝑧(𝑘) −  𝑥(𝑘|𝑘 − 1)) (6) 

 

e. State update covariance: 

𝑃(𝑘|𝑘)  =  (1 −  𝐾(𝑘))  ∗  𝑃(𝑘|𝑘 − 1) (7) 

 
These steps have to be repeated for each 

measurement. The magnitude of the filtered 

values is given by 𝑥(𝑘|𝑘)  at any time 𝑘 , where 

these values are values obtained based on the 

estimated speed at time 𝑘. 

The final step is to convert the velocity data (𝑣) 

to displacement data (𝑥) in the time domain (t) by 

using the following Eq (8). 

 

𝑥 =  ∫ 𝑣 𝑑𝑡
𝑡

1

 (8) 

 

The integral results of the velocity data can be 

applied as the input displacement data for the 

loading program of simulation road profile 

automotive testing. The input loading is given to 

each actuator supporting each vehicle wheel as 

shown in Figure 1 and Figure 2. 

 

4. Analysis and Discussion 

The number of data row from the field survey 

is 1 million rows as the results of measurements 

using an accelerometer mounted on each wheel of 

four wheels vehicle. Data resampling is part of the 

data processing of 1 million data in units of volt, 

which is then converted to 𝑚/𝑠2  with an 

equivalence value (1G = 0.002 Volts). Down 

sampling was carried out, from one million rows 
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by using the aggregate average in each 2000 rows 

of data to 512 rows data (Figure 4 and Figure 5). 

To detect the noise or inconsistency of raw 

data, it can be done through the histogram as 

shown in Figure 7 and Figure 8 the histograms of 

measurement data and displacement data, 

consecutively, so that the number of extreme 

values indicates the noise. 

 

 
Figure 7. Histogram of measurement data 

 

 
Figure 8. Histogram of acceleration data 
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The numbers of extreme values in the 

measurement data and acceleration conversion 

are shown at the maximum and minimum value 

intervals in Figure 7 and Figure 8, while the 

position of the noise or extreme values can be seen 

in Figure 4 for the measurement data and Figure 5 

for the acceleration conversion. The extreme 

values of the measurements (Figure 7) have 

negative values with intervals of -0.0199 volts to 0 

volts recorded on wheels 2 and 4, where on wheel 

2 there are 6 peak values between -0.0199 volts to 

-0.0135 volts. Meanwhile, negative values in 

acceleration data are similar to measurement data, 

where negative values occur in wheels 2 and 4 

with intervals of -103 m/s2  – 0 m/s2  (Figure 8). 

Meanwhile, positive extreme values occur in data 

wheel 3 with intervals from 0.0401 to 0.0457 volts 

from measurement data and 201 to 225 𝑚/𝑠2  in 

wheel 3 of acceleration data. 

The extreme values or noise can be reduced by 

computing as follows on the FFT method to 

become new acceleration data (Figure 9 and Figure 

10). The noise number has decreased significantly, 

in which there is no negative value and the only 

first data value of each wheel has the extreme 

value, i.e. > 200 m/s2 . The distribution of 

acceleration data values is more even and 

concentrated in the interval of the median value of 

each wheel. Data values of wheel 1, 2, 3, and 4 are 

concentrated at intervals of 88 to 120 m/s2, 30 to 

80 m/s2 , 170 to 190 m/s2 , and 10 to 50 m/s2 , 

consecutively. With a more even distribution 

values, the noise is reduced and the integration 

process can be carried out to estimate the velocity 

data values. 

The output data in Figure 9, based on the 

movement of the test vehicle, describes that the 

sensor positions of wheels 1 and 3 at the front and 

rear wheels respectively, but the axles are 

different. These are similarly with wheels 2 and 4. 

From point of viewed general road surface, the 

same surface is traversed by wheels 1 and 3, and 

also the other side road surface is traversed by 

wheels 2 and 4. The accelerometer mounted on 

each wheel captures signals from the movement 

of the wheels and these signals are converted in 

units of volts. The results of filtering using the FFT 

indicate that there is a fairly large spike of each 

measured wheel data at the time of initial moving 

vehicle.  Each wheels give a signal to each 

accelerometer in the form of voltage (volts) and 

the initial movement of the vehicle gives a shock 

signal to the accelerometer so that the output 

voltage has quite large value. After a normally 

running vehicle (about 10 seconds), the 

accelerometer has been able to adapt road signals. 

The results of noise separation using the FFT show 

that the acceleration data within a time span of 512 

seconds is closed to the real conditions. Overall, 

the acceleration trend of the 4 wheels, especially 

wheels 1 and 3, as well as wheels 2 and 4, are 

almost the same. 

Figure 10 shows the histogram of the FFT 

output of all 512 acceleration data values in which 

the condition of the road surface traversed by the 

4 wheels of the test vehicle has different total 

frequent acceleration values. Differences in 

acceleration values occur between wheels 1 and 3 

as well as wheels 2 and 4 even though they 

generally cross on the same road surface. The 

 

 
Figure 9. Acceleration data as output of FFT process 
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Figure 10. Histogram of FFT output 

 

potential different values can be caused by 

differences in the trajectories traversed by wheels 

1 and 3 as well as wheels 2 and 4, environmental 

influences such as dust, dirt around the installed 

accelerometer, and the accelerometer equipment 

used has a different level of precision and 

sensitivity due to installation. These can be seen 

that wheels 1 and 3 have different acceleration 

values where the acceleration value of wheel 3 is 

higher than wheel 1, and so does with wheels 2 

and wheel 4 where the acceleration of wheel 2 is 

higher than that of wheel 4, but the acceleration 

trend of wheel 1 and 3 as well as wheel 2 and 4 

have almost the same trend. 

This data is integrated by using Eq (2) to 

transform becoming the velocity data as shown in 

Figure 11 and Figure 12. Figure 11 shows velocity 

graphs, where the input data of filtering 

acceleration values using FFT has been processed, 

and the results are approaching to real mode and 

values of acceleration data. Then, the next process 

is a mathematical process where the acceleration 

values are integrated to produce velocity signals, 

in which there are graphically no significant 

changes. The wheels 1 and 3 as well as wheels 2 

and 4 only experience change in the magnitude of 

the velocity values and their units while the 

velocity trend graphs remain the same. 

Figure 12 shows the velocity histogram, where 

the peak velocity values that most often appear in 

the time span of 512 velocity values can be 

describe as the velocity frequent values between 

3.21 - 3.4 m/s of wheel 1, 1.51 - 2 .00 m/s of wheel 

2, 5.61 - 5.80 m/s of wheel 3, and 0.81 - 1.20 m/s of 

wheel 4 are 186, 194, 214, and 205 times, 

consecutively. The velocity values and frequent 

number are obtained as the result of a 

mathematical process due to integral acceleration 

data. The mathematical processes that occur 

between wheels 1 and 3 as well as wheels 2 and 4 

cause differences in the magnitudes of velocity. 

These occur following changes in the input 

acceleration data, while the velocity modes have 

the same trend of the acceleration graphs. 

The results of filtered velocity by using the 

Kalman Filter are shown in Figure 13 and Figure 14. 

This second filter is used to reduce the remaining 

noise. In general, applying the Kalman filter 

method, the estimated velocity values are almost 

the same to the velocity values as the integration 

results of acceleration data indicating that the 

input velocity values have insignificant noise. The 

results of filtering on wheels 1 and 3 do not 

experience large changes in their velocity values 

as well as those of wheels 2 and 4. The velocity 

graphs, before and after processed through  
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Figure 11. Velocity as integral output of accelerometer data 

  

 
Figure 12. Velocity histogram as integral output 

 

Kalman Filter on wheels 1 and 3 as well as wheels 

2 and 4 are almost the same modes and 

magnitudes (Figure 13). 

Figure 14 shows the speed histogram of the 

Kalman filter results, where the happen frequent 

velocity values of each wheel among 512 peak 

velocity values are the velocities of wheel 1 

between 2.41 - 2.80 m/s, wheel 2 in between 0.01 - 

0.50 m/s, wheel 3 in between 6.01 - 6.25 m/s, wheel 

4 in between -1.50 – (-1.01) m/s have the peak 

number of 242, 178, 161, 198 times, successively. 

The results of Kalman Filter Process show that 

wheels 1 and 3 as well as wheels 2 and 4 have only 

small differences in the magnitudes of velocity 

value, while the graphical velocity trends are 

similar between wheels 1 and 3 as well as wheels 

2 and 4. 

The displacement values as a result of the 

velocity integral are shown in Figure 15 and Figure 

16. The two-time filtering processes using the FFT 

and Kalman Filter have been done to reduce the 

noise for obtaining the velocity values. The 

displacement graphics of wheels 1 and 3 as well as 

wheels 2 and 4 are similar the velocity graphs but 

different on unit system, due to the mathematical 

process of integration method. 
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Figure 13. Velocity as output of Kalman Filter 

 

 
Figure 14. Velocity histogram Kalman Filter 

 

 The initial displacement values in Figure 15 

have quite high magnitudes since these values 

follow the accelerometer output data. The raw 

data as the first input of subsequent processes 

reducing the noise is carried out only up to a 

certain limit where the potential for lost real data 

can be reduced, and at the end of the process, the 

displacement data has fairly high values. This 

result is indicated due to the influence of the 

accuracy and sensitivity of the accelerometer 

when the measurement starts and stops suddenly. 

The displacement values on wheels 1 and 3 as 

well as wheels 2 and 4 do not affect the trend of 

the displacement graph (Figure 15), in which the 

only changes are in the magnitude values and unit 

length (m) (Figure 16). The most frequent peak 

values of wheel 1, 2, 3 and 4 are 0.08 m for 194 

times, 0 m for 134 times, 0.19 m for 248 times, and 

-0.03 m (-0.02 m) for 113 times (112 times), 

consecutively. In general, the difference peak 

value of wheels 1 and 3 is 0.11 m, while wheels 2 

and 4 is 0.03 m. The potential sources for these  
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Figure 15. Displacement as integral output of velocity  

 

 
Figure 16. Displacement histogram 

 

differences are affected such as the road paths 

traversed by wheels 1 and 3 (left-front and rear) 

and wheels 2 and 4 (right-front and rear) not 

necessarily the same location, and environmental 

influences such as dust, dirt, watery roads, and 

also the conditions of each accelerometer with 

different levels of accuracy and sensitivity 

considering the different locations where they are 

installed. 

5. Conclusion 

a. The combined processes of FFT and KF are 

tested in this study to find out the results of 

road profile data analysis and the study goal is 

to solve the conversion problem from the 

measurement data becoming the 

displacements. 

b. In the filter design for converting acceleration 

into displacement, it shows that the FFT filter 
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plays a more significant role in filtering, so the 

filter reduces the noise of displacement data 

significantly.  

c. In this experiment, the Kalman filter was not 

modified the velocity data significantly, so it 

seemed that the filter makes a small 

contribution to reduce the noise and distortion 

that occurred. 

d. The input acceleration data values  wheel 1, 2, 

3, and 4 are concentrated at intervals of 88 to 

120 𝑚/𝑠2, 30 to 80 𝑚/𝑠2, 170 to 190 𝑚/𝑠2, and 

10 to 50 𝑚/𝑠2 , consecutively. And the most 

frequent filtered displacement peak values of 

wheel 1, 2, 3 and 4 are 0.08 m for 194 times, 0 m 

for 134 times, 0.19 m for 248 times, and -0.03 m 

(-0.02 m) for 113 times (112 times), 

successively. 
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