Automotive Experiences https://journal.unimma.ac.id/index.php/AutomotiveExperiences <p><span style="font-size: 12px;"><span style="font-size: 12px;">Journal title : <strong>Automotive Experiences&nbsp;<a href="https://www.scopus.com/sourceid/21101038528" target="_blank" rel="noopener"><img src="/public/site/images/mujisetiyo/Scopus.png" width="25%" height="25%" align="right"></a></strong><br><span style="font-size: 12px;">Abbreviation : <strong>AE</strong><br>ISSN : <a href="http://www.issn.lipi.go.id/issn.cgi?daftar&amp;1521340796&amp;1&amp;&amp;" target="_blank" rel="noopener">2615-6636</a>&nbsp;(e)&nbsp;<a href="http://www.issn.lipi.go.id/issn.cgi?daftar&amp;1519445969&amp;1&amp;&amp;" target="_blank" rel="noopener">2615-6202</a>&nbsp;(p)<a href="http://u.lipi.go.id/1180427309" target="_blank" rel="noopener"><br></a>DOI Prefix : <a href="https://search.crossref.org/?q=2615-6202" target="_blank" rel="noopener">10.31603/ae</a><br>Type of peer-review : <strong>Single-blind<a href="http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/peerreview">&nbsp;</a><a href="http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/peerreview"><em class="fa fa-external-link">&nbsp;</em></a></strong><br>Indexing : <a href="https://www.scopus.com/sourceid/21101038528" target="_blank" rel="noopener">Scopus</a> and<a href="http://journal.unimma.ac.id/index.php/AutomotiveExperiences/indexs"> view more&nbsp;</a><a href="http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/indexs"><em class="fa fa-external-link">&nbsp;</em><br></a>Frequency : 3 issues/year (Apr, Aug, Dec)</span><br>Business model : OA, Author-Pays<a href="http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/apc"><strong>&nbsp;<em class="fa fa-external-link">&nbsp;</em></strong></a></span><br><span style="font-size: 12px;"><span style="font-size: 12px;"><span style="font-size: 12px;">Journal History : See <a href="http://journal.unimma.ac.id/index.php/AutomotiveExperiences/history">Journal history&nbsp;</a><a href="http://journal.ummgl.ac.id/index.php/AutomotiveExperiences/history"><em class="fa fa-external-link">&nbsp;</em><br></a>Editors :&nbsp;See&nbsp;<a href="http://journal.unimma.ac.id/index.php/AutomotiveExperiences/about/editorialTeam">Editorial&nbsp;Team &nbsp;</a><br>Citation analysis :&nbsp;|&nbsp;<a href="https://scholar.google.co.id/citations?hl=id&amp;user=rfZMqxEAAAAJ" target="_blank" rel="noopener">Google Scholar&nbsp;</a>|&nbsp;<a href="https://sinta3.kemdikbud.go.id/journals/profile/5676" target="_blank" rel="noopener">Sinta&nbsp;</a>|<br>Journal cover: get <a href="http://journal.unimma.ac.id/index.php/AutomotiveExperiences/cover" target="_blank" rel="noopener">here</a></span></span></span></span></p> Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE) en-US Automotive Experiences 2615-6202 Structural Analysis of Brake Shoe under Static Load Using Al Alloy, Cast Iron, Mg Alloy for Main Components, and Carbon Variants for Brake Linings https://journal.unimma.ac.id/index.php/AutomotiveExperiences/article/view/11207 <p>The research is motivated by the issue faced by motorcycle users, namely the wear and tear of brake shoes, which can reduce braking effectiveness and increase the risk of accidents. The main objective of this study is to analyze the structural properties of motorcycle brake shoes with three different materials (aluminum alloy, cast iron, and magnesium alloy) and brake linings made of different carbon variants (alumina-carbon composite, carbon ceramics, and carbon fiber) under static pressures. Additional design aspects including weight and production cost are also evaluated during the material selection process for the motorcycle’s brake shoe and brake lining. The 3D modeling of the brake shoe and lining was done in Solidworks using measurement data from a Coordinate Measuring Machine (CMM). The finite element analysis was performed using ABAQUS software. Considering the results from the finite element analysis, weight, and economic aspects, the study found that aluminum alloy (Al alloy) and carbon composite can be suitable materials for brake shoes and brake lining. The Al alloy brake shoe provides 62.7% weight saving while exhibiting good structural properties under static load and a moderate increase in production cost compared to cast iron. Similarly, brake lining with alumina-carbon composite showed the least deformation under static load while maintaining modest production costs compared to the other carbon variants.</p> Dony Eko Prasetyo Hadi Sutanto Arka Dwinanda Soewono ##submission.copyrightStatement## http://creativecommons.org/licenses/by-nc/4.0 2024-11-21 2024-11-21 7 3 10.31603/ae.11207 Experimental and Finite Element Study of Rollover Protection Structure for a 22-Seat Man Hauler Superstructure Vehicle https://journal.unimma.ac.id/index.php/AutomotiveExperiences/article/view/11380 <p>The application of man hauler which classified as heavy-duty vehicle and operated on the upper ground mining, requires high safety measurement as arrange in the UN-ECE No. 66. The safety measure demands vehicles to undergo both structural testing and analysis. The investigation of structural testing for heavy-duty vehicles has been developed to the rollover testing that used tilting platform, to see the deformation impact toward the residual space and foresight opportunities for further development on the vehicle structure or warning system. Rollover testing is costly and time consuming, so new or developed vehicle structure needs finite element model analysis, to predict the deformation level due to rollover incident. Both testing have the same goal which is to confirm the vehicle structure able to protect the passenger compartment. Therefore, this study aims to present a guidance to test a complete set of 22-seat man hauler vehicle with stress distribution analysis, quasi-static loading test of body section, and tilting platform. The results of the stress distribution test are that the load is concentrated on the element number 148 in the rear UNP 100 profile.&nbsp; The results of the quasi-static loading test are that the maximum stress that occurs is 33 % b the allowable stress. The simulation result under this condition shows that the maximum deflection value occurred in the side frame structure is 167.9 mm. The largest deformation due to rolling test occurred at point E has value of 27 mm located on the right side that experienced impact on the floor during the test. The overall testing and analysis are able to verify and confirm the vehicle structural strength, that the vehicle able to withstand the rollover impact and to protect the passengers.</p> Muchamad Gozali Djoko Wahyu Karmiadji Wina Libyawati Budi Haryanto Muhamad Masrur Arief Setyawan Wahyu Sulistiyo Makmuri Nuramin Anwar Anwar Budi Susilo ##submission.copyrightStatement## http://creativecommons.org/licenses/by-nc/4.0 2024-11-21 2024-11-21 7 3 10.31603/ae.11380