Main Article Content

Abstract

Currently, welding is still very necessary for the increasingly advanced development of technology in the construction sector because it plays an important role in metal engineering and maintenance. This research aims to determine the effect of interpass temperature on deformation of weld results in ASTM A36 steel material. The method used in this research is an experimental method by measuring the deformation of the welded specimen. There are 9 specimens, the welding process uses shielded metal arc welding (SMAW), direct current reverse polarity (DCRP) with interpass temperature variations of 75 °C, 100 °C and 150 °C. The measurement results show deformation values ​​of 2.2°, 3.5° and 4° for each of the interpass temperatures of 75 °C, 100 °C and 150 °C. From the results of impact testing on specimens with interpass temperatures of 75 °C and 100 °C, it shows mixed fracture, namely brittle fracture and ductile fracture. The results of impact testing on specimens with an interpass temperature of 150 °C showed brittle fracture. The highest strength was at interpass temperature specimen of 100 °C, that is 211.79 Joules. And the lowest impact strength occurred in the interpass temperature specimen at 150 °C, that is 183.16 Joules.

Keywords

SMAW; Interpass temperature; Deformation

Article Details

References

  1. Wiryosumarto, H., & Okumura, T. (2000). Teknologi Pengelasan Logam Pradnya Paramita. Pradnya Paramita.
  2. http://opac-perpusbunghatta.perpusnas.go.id/detail-opac?id=4917
  3. Siswanto, R. (2018). Buku Ajar Teknologi Pengelasan. Universitas Lambung Mangkurat. https://scholar.google.co.id/scholar?cluster=10512520527761671131&hl=id&as_sdt&sciodt=0,5
  4. Muqsalmina, Syukran, Hanif. (2019). Pengaruh Interpass Temperature Terhadap Sifat Mekanik Proses Pengelasan SMAW Matrial Carbon Steel SS400. Journal off Welding Technology, 1(1), 17-21. https://e-jurnalpnl.ac.id/Welding_Technology/article/view/1454/0
  5. Amin, A. (2016). Pengaruh Variasi Temperatur Interpas Terhadap Struktur Mikro dan Fraktorafi HAZ Hasil Pengelasan GMAW Metode Temper Bead Welding pada Baja Karbon Sedang. Jurnal Teknik Mesin UNISKA, 2(1), 9-15. https://scholar.google.co.id/citations?view_op=view_citation&hl=id&user=A4ePtdEAAAAJ&citation_for_view=A4eAAAAJ:d1gkVwhDpl0C
  6. Azwinur, & Muhazir. (2019). Pengaruh Jenis Elektroda Pengelasan SMAW Terhadap Sifat Mekanik Material SS400. Jurnal Polimesin, 17(1), 19-25. Dikutip dari https://e-jurnal.pnl.ac.id/polimesin/article/view/870
  7. Wibowo, H., Ilman, M. N., Iswanto, P. T. (2016). Analisa Heat Input Pengelasan terhadap Distorsi, Struktur Mikro dan Kekuatan Mekanis Baja A36. Jurnal Rekayasa Mesin, 7(1), 5-12. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=analisa+heat+input+pengelasan%2C+heri+wibowo&btnG=#d=gs_qabs&t=1690165348909&u=%23p%3DgXvxLUGWt-0J
  8. Akbar, T., & Santosa, B. (2012). Analisa Pengaruh dari Welding Sequence Terhadap Tegangan Sisa dan Deformasi Pada Circular Patch Weld Double Bevel But-Joint Plat ASTM A36 Menggunakan Metode Elemen Hingga. Jurnal Teknik ITS, 1(1), 352 – 356. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=taufik+akbar%2C+budie+santosa&btnG=#d=gs_qabs&t=1690167710402&u=23%3DP84908e0MzsJ
  9. Sunaryo, H. (2008). Teknik Pengelasan Kapal Jilid 1. Jakarta: Direktorat Pembinaan Sekolah Menengah, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.
  10. Andersen, L. Heat Input & Interpass Temperature During Welding [E-book version]. Retrieved from https://teandersen.com/uploads/rDh63ZFc/technical_update_heat_input_and_interpass_temperature_during_welding.pdf
  11. Mulyadi, & Iswanto. (2020). Buku Ajar Teknologi Pengelasan. UMSIDA Press. http://eprints.umsida.ac.id/8386/1/Buku%20Ajar_Iswanto.pdf
  12. Yan Ma, Cuiuri, D., Shen, C., Huijun, L., Pan, Z. (2015). Effect of interpass temperature on in-situ alloying and additivemanufacturing of titanium aluminides using gas tungsten arc welding. Additive Manufacturing, 8. 71 – 77. Retrieved from http://www.elsevier.com/locate/addma
  13. Ramjaun, T, I., Stone, H, J., Karlsson, L., Kelleher, J., Moat, R, J., Kornmeier, J, R., Dalaei, K., Bhadeshia, H, K, D, H. The effect of inter-pass temperature on residual stresses in multi-pass welds produced using a low transformation temperature filler alloy. Scinece and Technology of Welding and Joining, 19, 44–51. Retrieved from https://www.phase-trans.msm.cam.ac.uk/2014/Tim/interpass_Ramjaun_STWJ_2014.pdf
  14. Macedo, F, A, A., Castro, J, A., Santos, C., Strecker, K., Xavier, C,R. (2021). Influence of The Interpass Welding Temperature on Microstructure and Corrotion Resistance of Superduplex Stainless Steel SAF 2507. Materials Research, 24(3), 1-12. Dikutip dari https://www.scielo.br/j/mr/a/sXmqx9VfH3XxbtZv3R7Pn7v/?format=pdf
  15. Saifuddin, A, J., Zulkifli, Tri Rahayu (2017). Analisa Kekuatan Impak pada Penyambungan Pengelasan SMAW Material ASSAB 705 dengan Variasi Arus Pengelasan. Jurnal Polimesin, 15(2), 58 – 63. Dikutip dari http://e-jurnal.pnl.ac.id/polimesin/article/view/376
  16. Wijoyo, Bayu Indriyanto (2016). Pengaruh Masukan Panas (Heat Input) Terhadap Ketangguhan Impak Sambungan Las TIG Al-13,5Si. Jurnal Simetris 7(2). 545 – 550.
  17. Juang, W., et al. 2003. “Effect of Weld Heat Input on Toughness and Structure of HAZ of a New Super-high Strength Steel”. Indian Academy of Sciences 26. 3, 301-305.

Most read articles by the same author(s)