Main Article Content
Abstract
Screws, barrels, and dies are high-wear parts in PVC pipe extruders; therefore, implementing an efficient maintenance plan to guarantee maximum productivity and reduce overall cost of production in plastics manufacturing. This paper used a systematic review of academic literature (2018–2025) and performed an LCC analysis to evaluate corrective, preventive, and predictive maintenance approaches. The assessable cost factors consisted of labour cost, production downtime, replacement of spare parts, and effect of maintenance on the resource of the component. Further, it was discovered that the corrective maintenance which took a reactive approach had a low first cost but high cost throughout the use of equipment due to repetitive breakdowns and unscheduled downtimes. The application of preventive maintenance, as a way to minimize the risk of dangerous failures, led to moderate costs as a result of possible over-maintenance. CBM self-organized to condition-based monitoring and use of big data allowed for the development of a predictive maintenance strategy, which proved more cost-effective than the other three. The advantages of PM include decreased down time, increased component durability, increased reliability, and overall reduced costs for the system’s life cycle. These findings call for the implementation of preventive measures on the PVC pipe extruder systems to optimize manufacturing and cut costs in the long run for increased reliability of manufacturing processes
Keywords
Article Details
References
- Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299.
- Ahmed, A. A., Abdullahi, A. U., Gital, A. Y. u., & Dutse, A. Y. (2024). Application of Artificial Intelligence in Supply Chain Management: A Review on Strengths and Weaknesses of Predictive Modeling Techniques. Scientific Journal of Engineering, and Technology, 1(2), 1-18.
- Akbari, M., Asadi, P., Bedir, F., & Choupani, N. (2024). Friction Stir Extrusion: Parametrical Optimization for Improved Al-Si Aluminum Tube Production. International Journal of Lightweight Materials and Manufacture.
- Bui, T.-D., Tsai, F. M., Tseng, M.-L., Tan, R. R., Yu, K. D. S., & Lim, M. K. (2021). Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. Sustainable production and consumption, 26, 373-410.
- Castelló-Pedrero, P., García-Gascón, C., Bas-Bolufer, J., & García-Manrique, J. A. (2024). Integrated computational modeling of large format additive manufacturing: Developing a digital twin for material extrusion with carbon fiber-reinforced acrylonitrile butadiene styrene. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 238(2), 332-346.
- Chi, H. R., Wu, C. K., Huang, N.-F., Tsang, K.-F., & Radwan, A. (2022). A survey of network automation for industrial internet-of-things toward industry 5.0. IEEE Transactions on Industrial Informatics, 19(2), 2065-2077.
- Delgado-Aguilar, M., Tarrés, Q., Marques, M. d. F. V., Espinach, F. X., Julián, F., Mutjé, P., & Vilaseca, F. (2019). Explorative study on the use of Curauá reinforced polypropylene composites for the automotive industry. Materials, 12(24), 4185-4200.
- Gaddam, S. K., Pothu, R., & Boddula, R. (2021). Advanced polymer encapsulates for photovoltaic devices− A review. Journal of Materiomics, 7(5), 920-928.
- González-Delgado, Á. D., Ramos-Olmos, M., & Pájaro-Gómez, N. (2023). Bibliometric and Co-Occurrence Study of Process System Engineering (PSE) Applied to the Polyvinyl Chloride (PVC) Production. Materials, 16(21), 6932.
- Gupta, U. S., & Tiwari, S. (2020). Study on the Development of Banana Fibre Reinforced Polymer Composites for Industrial and Tribological Applications: A Review. IOP Conference Series: Materials Science and Engineering, 810, 012076. doi:10.1088/1757-899x/810/1/012076
- Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2021). Hyperautomation for the enhancement of automation in industries. Sensors International, 2, 100124.
- Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management, 7(01), 83-111.
- Jiang, Y., Serrano, A. X., Choi, W., Advincula, R. C., & Wu, H. F. (2024). Advanced and functional composite materials via additive manufacturing: Trends and perspectives. MRS communications, 14(4), 449-459.
- Juliano, P., & Reyes-De-Corcuera, J. I. (2022). Food engineering innovations across the food supply chain: Debrief and learnings from the ICEF13 congress and the future of food engineering. In Food engineering innovations across the food supply chain (pp. 431-476): Elsevier.
- Kazak, I. (2021). Improvement of the extruder body design in order to increase reliability and quality of extrusion. Technology audit and production reserves, 4(1), 60.
- Khan, Y., Su’ud, M. B. M., Alam, M. M., Ahmad, S. F., Ahmad, A. Y. B., & Khan, N. (2022). Application of internet of things (iot) in sustainable supply chain management. Sustainability, 15(1), 694.
- Khanfar, A. A., Iranmanesh, M., Ghobakhloo, M., Senali, M. G., & Fathi, M. (2021). Applications of blockchain technology in sustainable manufacturing and supply chain management: A systematic review. Sustainability, 13(14), 7870.
- Kumar, A., & Saha, S. (2025). Data-driven cost estimation in additive manufacturing using machine learning approaches. In Machine Learning for Powder-Based Metal Additive Manufacturing (pp. 243-267): Elsevier.
- Kumar, S., Gaur, V., & Wu, C. (2022). Machine learning for intelligent welding and manufacturing systems: research progress and perspective review. The International Journal of Advanced Manufacturing Technology, 123(11), 3737-3765.
- Liu, J., Chen, X., Qiu, X., Zhang, H., Lu, X., Li, H., Chen, W., Zhang, L., Que, C., & Zhu, T. (2021). Association between exposure to polycyclic aromatic hydrocarbons and lipid peroxidation in patients with chronic obstructive pulmonary disease. Science of the Total Environment, 780, 146660.
- Lopez Taborda, L. L., Maury, H., & Esparragoza, I. E. (2024). Design methodology for fused filament fabrication with failure theory: framework, database, design rule, methodology and study of case. Rapid Prototyping Journal, 30(9), 1803-1821.
- Mahmood, A., Irfan, A., & Wang, J.-L. (2022). Machine learning for organic photovoltaic polymers: a minireview. Chinese Journal of Polymer Science, 40(8), 870-876.
- Manojlović, V., Kamberović, Ž., Korać, M., & Dotlić, M. (2022). Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Applied Energy, 307, 118209.
- Masato, D., & Kim, S. K. (2023). Global workforce challenges for the mold making and engineering industry. Sustainability, 16(1), 346.
- Mastos, T., & Gotzamani, K. (2022). Sustainable supply chain management in the food industry: A conceptual model from a literature review and a case study. Foods, 11(15), 2295.
- Mnyango, J. I., & Hlangothi, S. P. (2024). Polyvinyl chloride applications along with methods for managing its end-of-life items: A review. Progress in Rubber, Plastics and Recycling Technology, 14777606241308652.
- Morita, L., Asad, A., Sun, X., Ali, M., & Sameoto, D. (2024). Integration of a needle valve mechanism with cura slicing software for improved retraction in pellet-based material extrusion. Additive Manufacturing, 82, 104045.
- Natrayan, L., Kumar, P., Kaliappan, S., Sekar, S., Patil, P. P., Velmurugan, G., & Gurmesa, M. D. (2022). Optimisation of Graphene Nanofiller Addition on the Mechanical and Adsorption Properties of Woven Banana/Polyester Hybrid Nanocomposites by Grey-Taguchi Method. Adsorption Science & Technology, 2022.
- Nege, T. B., & Abegaz, M. B. (2024). Sustainable Supply Chain Management for Business Competitiveness: A Systematic Literature Review. European Business & Management, 10(2), 53-68.
- Novak, A., Bennett, D., & Kliestik, T. (2021). Product decision-making information systems, real-time sensor networks, and artificial intelligence-driven big data analytics in sustainable Industry 4.0. Economics, Management and Financial Markets, 16(2), 62-72.
- Odetola, A. O., Oyewo, A. T., & Adegbola, J. O. (2025). Electrochemical Studies of Hybrid Botanical Extracts on Mild Steel Corrosion in Hydrochloric Acid Medium. UNIZIK Journal of Engineering and Applied Sciences, 4(1), 1497-1503.
- Ouyang, Y., O'Hagan, M. P., & Willner, I. (2022). Functional catalytic nanoparticles (nanozymes) for sensing. Biosensors and Bioelectronics, 218, 114768.
- Oyewo, A. T. (2024). Predictive Model for Estimating the Tensile Strength of Biodegradable Banana Pseudostem Fiber Composite Through the Utilization of Taguchi Optimization Technique. Materials Circular Economy, 6(1), 55. doi:10.1007/s42824-024-00145-6
- Oyewo, A. T., Oluwole, O. O., Ajide, O. O., Omoniyi, T. E., Hamayun, M. H., & Hussain, M. (2022). Experimental and theoretical studies to investigate the water absorption behavior of carbon/banana fibre hybrid epoxy composite. Materials chemistry and Physics, 285(3), 126-138.
- Pecha, M. B., & Garcia-Perez, M. (2020). Chapter 29 - Pyrolysis of lignocellulosic biomass: oil, char, and gas. In A. Dahiya (Ed.), Bioenergy (Second Edition) (pp. 581-619): Academic Press.
- Qureshi, I., Tariq, R., Habib, M., & Insha, S. (2025). Artificial Intelligence in Three-Dimensional (3D) Printing. In Artificial Intelligence in the Food Industry (pp. 206-218): CRC Press.
- Rafati, A., Mirshekali, H., Shaker, H. R., & Bayati, N. (2024). Power Grid Renovation: A Comprehensive Review of Technical Challenges and Innovations for Medium Voltage Cable Replacement. Smart Cities, 7(6), 3727-3763.
- Rane, N. (2023). Integrating Building Information Modelling (BIM) and Artificial Intelligence (AI) for Smart Construction Schedule, Cost, Quality, and Safety Management: Challenges and Opportunities. Cost, Quality, and Safety Management: Challenges and Opportunities (September 16, 2023).
- Rane, N. L., Paramesha, M., Choudhary, S. P., & Rane, J. (2024). Artificial intelligence, machine learning, and deep learning for advanced business strategies: a review. Partners Universal International Innovation Journal, 2(3), 147-171.
- Riahinezhad, M., Hallman, M., & Masson, J. (2021). Critical review of polymeric building envelope materials: degradation, durability and service life prediction. Buildings, 11(7), 299.
- Riquette, R. F. R., Ginani, V. C., Leandro, E. d. S., de Alencar, E. R., Maldonade, I. R., de Aguiar, L. A., de Souza Acácio, G. M., Mariano, D. R. H., & Zandonadi, R. P. (2019). Do production and storage affect the quality of green banana biomass? LWT, 111, 190-203. doi:https://doi.org/10.1016/j.lwt.2019.04.094
- Shar, A. H., Lakhan, M. N., Alali, K. T., Liu, J., Ahmed, M., Shah, A. H., & Wang, J. (2020). Facile synthesis of reduced graphene oxide encapsulated selenium nanoparticles prepared by hydrothermal method for acetone gas sensors. Chemical Physics Letters, 755, 137797.
- Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 100292.
- Singh, A. B., Khandelwal, C., & Dangayach, G. S. (2024). Revolutionizing healthcare materials: Innovations in processing, advancements, and challenges for enhanced medical device integration and performance. Journal of Micromanufacturing, 25165984241256234.
- Sinha, A., Sulas-Kern, D. B., Owen-Bellini, M., Spinella, L., Uličná, S., Pelaez, S. A., Johnston, S., & Schelhas, L. T. (2021). Glass/glass photovoltaic module reliability and degradation: a review. Journal of Physics D: Applied Physics, 54(41), 413002.
- Sionkowski, T., Halecki, W., & Chmielowski, K. (2023). Advancing Urban Wastewater Management: Optimizing Sewer Performance through Innovative Material Selection for the Armlet with a Wet Circuit Measurement System. Applied Sciences, 13(19), 10892.
- Sohag, M. U., & Podder, A. K. (2020). Smart garbage management system for a sustainable urban life: An IoT based application. Internet of Things, 11, 100255.
- Stadnicka, D., Sęp, J., Amadio, R., Mazzei, D., Tyrovolas, M., Stylios, C., Carreras-Coch, A., Merino, J. A., Żabiński, T., & Navarro, J. (2022). Industrial needs in the fields of artificial intelligence, internet of things and edge computing. Sensors, 22(12), 4501.
- Taghizadeh, M., & Zhu, Z. H. (2024). A Comprehensive Review on Metal Laser Additive Manufacturing in Space: Modeling and Perspectives. Acta Astronautica.
- Tarragona, J., Pisello, A. L., Fernández, C., de Gracia, A., & Cabeza, L. F. (2021). Systematic review on model predictive control strategies applied to active thermal energy storage systems. Renewable and Sustainable Energy Reviews, 149, 111385.
- Thomas, D. (2023). Facilitating Cost-Effective Circular Economy With an Example on Plastics. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
- Turner, J., Harun, A., Yasin, M., Ali, N., Bakar, S., Fadzilla, M., Murad, S., Hambali, N., Razlan, Z., & Hashim, M. (2020). Modeling on impact of metal object obstruction in urban environment for internet of things application in vehicular communication. Paper presented at the AIP Conference Proceedings 4, 110-119.
- Vicente, C. M., Sardinha, M., Reis, L., Ribeiro, A., & Leite, M. (2023). Large-format additive manufacturing of polymer extrusion-based deposition systems: Review and applications. Progress in Additive Manufacturing, 8(6), 1257-1280.
- Wang, Y., Li, D., Nie, C., Gong, P., Yang, J., Hu, Z., Li, B., & Ma, M. (2023). Research Progress on the Wear Resistance of Key Components in Agricultural Machinery. Materials, 16(24), 7646.
- Wolf, A. T., & Stammer, A. (2024). Chemical Recycling of Silicones—Current State of Play (Building and Construction Focus). Polymers, 16(15), 2220.