Main Article Content

Abstract

Besi oksida dapat dikategorikan dalam beberapa jenis dan terbentuk melalui berbagai metode. Tiga prosedur umum untuk memperoleh oksida besi yaitu proses korosi, proses kimia basah, dan proses elektrolisis. Proses elektrolisis secara signifikan dipengaruhi oleh tegangan dan arus listrik yang diterapkan. Oleh karena itu memahami sifat-sifat oksida besi yang dihasilkan selama elektrolisis sangat penting. Pengaruh kuantitas listrik pada laju oksidasi memerlukan penyelidikan untuk menentukan parameter yang sesuai. Namun demikian, karakteristiknya harus dievaluasi menggunakan beberapa metode, termasuk pengujian XRF (X-Ray Fluorescence) yang merupakan teknik analisis untuk menentukan komposisi unsur dari sampel. Untuk menentukan jenis oksida besi, perbandingan sifat fisik setiap sampel sangat penting. Bentuk alami Fe2O3 disebut sebagai hematit, sedangkan Fe3O4 dikenal sebagai magnetit. Keduanya adalah oksida besi dengan warna berbeda; Fe2O3 biasanya berwarna coklat muda atau coklat kemerahan. Fe3O4 biasanya menunjukkan rona gelap atau coklat kehitaman. Penelitian ini menunjukkan hasil bahwa sampel yang dielektrolisis termasuk dalam kategori hematit berdasarkan warnanya, sedangkan sampel yang dihasilkan dari korosi alami lebih mirip dengan magnetit. Data uji XRF menunjukkan konsentrasi oksida 27,8% berat dalam sampel yang dielektrolisis. Fluktuasi tegangan dan arus selama proses elektrolisis hampir tidak mempengaruhi kandungan oksida yang dihasilkan.

Keywords

Iron_oxide; Iron_fuel; XRF; Electrolysis

Article Details

References

  1. Baigmohammadi, M., Prasidha, W., Stevens, N. C., Shoshyn, Y. L., Spee, T., & de Goey, P. (2023). Towards utilization of iron powders for heating and power. Applications in Energy and Combustion Science, 13, 100116. https://doi.org/10.1016/j.jaecs.2023.100116
  2. Bergthorson, J. M. (2018). Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science, 68, 169–196. https://doi.org/10.1016/j.pecs.2018.05.001
  3. Bergthorson, J. M., Goroshin, S., Soo, M. J., Julien, P., Palecka, J., Frost, D. L., & Jarvis, D. J. (2015). Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 160, 368–382. https://doi.org/10.1016/j.apenergy.2015.09.037
  4. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
  5. Campos, E. A., Stockler Pinto, D. V. B., Oliveira, J. I. S. de, Mattos, E. D. C., & Dutra, R. D. C. L. (2015). Synthesis, Characterization and Applications of Iron Oxide Nanoparticles - a Short Review. Journal of Aerospace Technology and Management, 7(3), 267–276. https://doi.org/10.5028/jatm.v7i3.471
  6. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C., & Matschoss, P. (Eds.). (2011). Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press. https://doi.org/10.1017/CBO9781139151153
  7. Halloran, J. W. (2015). A Very Solid Fuel: Ferrous Iron Oxide as a Geochemical Energy Source. Natural Resources, 06(02), 115–122. https://doi.org/10.4236/nr.2015.62010
  8. He, J., Li, K., Zhang, J., & Conejo, A. N. (2023). Reduction Kinetics of Compact Hematite with Hydrogen from 600 to 1050 °C. Metals, 13(3), 464. https://doi.org/10.3390/met13030464
  9. Jaya, G. W., Nggolaon, D., & Hattu, N. (2024). Ekstraksi dan Karakterisasi Senyawa Besi Oksida dari Batuan Vulkanik Pulau Ambon menggunakan Metode Kopresipitasi. Jurnal Fisika Unand, 13(1), 159–169. https://doi.org/10.25077/jfu.13.1.159-169.2024
  10. Julien, P., & Bergthorson, J. M. (2017). Enabling the metal fuel economy: green recycling of metal fuels. Sustainable Energy & Fuels, 1(3), 615–625. https://doi.org/10.1039/C7SE00004A
  11. Kuhn, C., Düll, A., Rohlfs, P., Tischer, S., Börnhorst, M., & Deutschmann, O. (2022). Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction. Applications in Energy and Combustion Science, 12, 100096. https://doi.org/10.1016/j.jaecs.2022.100096
  12. Li, S., Huang, J., Weng, W., Qian, Y., Lu, X., Aldén, M., & Li, Z. (2022). Ignition and combustion behavior of single micron-sized iron particle in hot gas flow. Combustion and Flame, 241, 112099. https://doi.org/10.1016/j.combustflame.2022.112099
  13. Liu, T., & Panahi, A. (2021). Metal Fuels as Alternative Sources of Energy for Zero Carbon Emission. IOP Conference Series: Earth and Environmental Science, 943(1), 012016. https://doi.org/10.1088/1755-1315/943/1/012016
  14. Majid, A. I., van Graefschepe, N., Finotello, G., van der Schaaf, J., Deen, N. G., & Tang, Y. (2023). Comparative study of electroreduction of iron oxide using acidic and alkaline electrolytes for sustainable iron production. Electrochimica Acta, 467, 142942. https://doi.org/10.1016/j.electacta.2023.142942
  15. Morita, M. (1973). Nuclear Excitation by Electron Transition and Its Application to Uranium 235 Separation. Progress of Theoretical Physics, 49(5), 1574–1586. https://doi.org/10.1143/PTP.49.1574
  16. Ning, D., Shoshin, Y., Oijen, J. van, Finotello, G., & Goey, P. de. (2023). Size evolution during laser-ignited single iron particle combustion. Proceedings of the Combustion Institute, 39(3), 3561–3571. https://doi.org/10.1016/j.proci.2022.07.030
  17. Ning, D., Shoshin, Y., van Stiphout, M., van Oijen, J., Finotello, G., & de Goey, P. (2022). Temperature and phase transitions of laser-ignited single iron particle. Combustion and Flame, 236, 111801. https://doi.org/10.1016/j.combustflame.2021.111801
  18. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  19. Perera, F., Ashrafi, A., Kinney, P., & Mills, D. (2019). Towards a fuller assessment of benefits to children’s health of reducing air pollution and mitigating climate change due to fossil fuel combustion. Environmental Research, 172, 55–72. https://doi.org/10.1016/j.envres.2018.12.016
  20. Zinkle, S. J., & Was, G. S. (2013). Materials challenges in nuclear energy. Acta Materialia, 61(3), 735–758. https://doi.org/10.1016/j.actamat.2012.11.004