Main Article Content

Abstract

This paper presented the test of cup drawing, and the tensile ability of tailor welded blanks (TWBs) used to join the resistance spot welding  a variety of different parameters. This study used SPCC-SD (JIS 3141) material with a material thickness of 1.0 mm and 1.2 mm. This research is focused on obtaining the highest tensile-shear strength of resistance spot welding and how it affects the results of the drawing cup process. This study used an experimental research method using six samples of RSW parameters. RSW parameters used are welding current, welding time, and squeeze time. This research was achieved the highest tensile-shear strength value of 5.09 kN and the lowest 4.15 kN which was achieved in the 5th and 1st samples respectively. The results of the cup drawing test using RSW parameters in the 5th and 6th samples showed no TWB failure in the welded area. Further research will be carried out by performing Taguchi optimization using RSW and TWBs parameters in the cup drawing process.

Keywords

Cup drawing, Tailor welded blanks, Resistance spot welding, Experimental research, tensile-shear strength

Article Details

References

  1. Abdulah, A., & Sukarman, S. (2020). Optimasi Single Response Proses Resistance Spot Welding.
  2. Multitek Indonesia: Jurnal Ilmiah, 6223(2), 69–79.
  3. Abdurahman, A., Sukarman, S., Djafar Shieddieque, A., Safril, S., Setiawan, D., & Rahdiana, N. (2021). Evaluasi Kekuatan Uji Tarik Pada Proses Pengelasan Busur Listrik Beda Material Sphc Dan S30-C. Jurnal Teknik Mesin Mechanical Xplore 1 (2), 29–37.
  4. American Welding Society (2012).Test Methods for Evaluating the Resistance spot welding Behavior of Automotive Sheet Steel (AWS D8.9M:2012)., https://www.worldcat.org/title/, diakses September 2021.
  5. Ertas, A. H., & Sonmez, F. O. (2011). Design Optimization Of Spot-Welded Plates For Maximum Fatigue Life. Asossociation For Computng Machinery, 47(4), pp 414 - 423. doi:https://doi.org/10.1016/j.finel.2010.11.003
  6. Gunawan, E., Sukarman, S., Shieddieque, A. D., & Anwar, C. (2019). Optimasi Parameter Proses Resistance spot welding pada Pengabungan Material SECC-AF. Prosiding Semnastera, Vol (1) (September).
  7. Kinsey, B. L., & Wu, X. (2011). Tailor Welded Blankss For Advanced Manufacturing. Oxford, Cambridge, Philadelphia, New Delhi: Woodhead Publishing Limited.
  8. Lin, Z. C., & Chang, D. A. Y. (1996). Selection of sheet metal bending machines by the PRISM- inductive learning method. Journal of Intelligent Manufacturing, 7(4), 341–349. https://doi.org/10.1007/BF00124834
  9. Mubiayi, M. P., Akinlabi, E. T., & Makhatha, M. E. (2019). Current Trends in Friction Stir Welding (FSW) and Friction Stir Spot Welding (FSSW). Company Springer International Publising AG of Springer Nature. https://doi.org/10.1007/978-3-319-92750-3
  10. Muthu, P. (2019). Optimization of the Process Parameters of Resistance spot welding of AISI 316l Sheets Using Taguchi Method. Mechanics and Mechanical Engineering, 23(1), 64–69. https://doi.org/10.2478/mme-2019-0009
  11. Oliveira, J. P., Ponder, K., Brizes, E., Abke, T., Ramirez, A. J., & Edwards, P. (2019). Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels. Journal of Materials Processing Technology, 273(January), 116192. https://doi.org/10.1016/j.jmatprotec.2019.04.018
  12. Olson, D. L., Thomas A., S., Liu, S., & Edwards, G. R. (1990). Welding, brazing, and soldering. In ASM INTERNATIONAL (Vol. 6). https://doi.org/10.1016/j.actamat.2018.11.063
  13. Parente, M., Safdarian, R., Santos, A. D., Loureiro, A., Vilaca, P., & Jorge, R. M. N. (2016). A study on the formability of aluminum Tailor welded blankss produced by friction stir welding. International Journal of Advanced Manufacturing Technology, 83(9–12), 2129–2141. https://doi.org/10.1007/s00170-015-7950-0
  14. Pasaribu, S. T., Sukarman, S., Shieddieque, A. D., & Abdulah, A. (2019). Optimasi Parameter Proses Resistance spot welding pada Pengabungan Beda Material SPCC. Prosisidng Simnastera, vol (1).
  15. Podržaj, P., Polajnar, I., Diaci, J., & Kariž, Z. (2008). Overview Of Resistance Spot Welding Control. Science and Technology of Welding and Joining, 13(3), 215–224. https://doi.org/10.1179/174329308X283893
  16. Rahdiana, N., Mulyadi, D., Pratama, C., & Hidayat, A. (2021). Analysis of Pressure Vessel Design on Radiator Cooling System Using Low Carbon Steel Materia. Journal of Applied Science and Advanced Technology. 3(3), 81–90.
  17. Shafee, S., Naik, B. B., & Sammaiah, K. (2015). Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method. Materials Today: Proceedings, 2(4–5), 2595–2604. https://doi.org/10.1016/j.matpr.2015.07.215
  18. Sukarman, S., & Abdulah, A. (2021a). Optimasi parameter resistance spot welding pada pengabungan baja electro-galvanized menggunakan metode Taguchi. Dinamika Teknik Mesin, 11(1), 39–48. https://doi.org/https://doi.org/10.29303/dtm.v11i1.372
  19. Sukarman, S., Abdulah, A., Jatira, J., Rajab, D. A., Anwar, C., Rohman, R., Akbar, M. A. (2020). Optimization of Tensile-Shear Strength in the Dissimilar Joint of Zn-Coated Steel and Low Carbon Steel. 3(3), 115–125.
  20. Sukarman, S., Khoirudin, K., Murtalim, M., Mulyadi, D., & Rahdiana, N. (2021b). Evaluasi Desain Bejana Bertekanan pada Radiator Cooling System Menggunakan Material SPCC-SD. 14(1), 10–16.
  21. Thakur, A. G., & Nandedkar, V. M. (2014). Optimization of the Resistance spot welding Process of Galvanized Steel Sheet Using the Taguchi Method. 1171–1176. https://doi.org/10.1007/- s13369-013-0634-x
  22. Tumuluru, M. (2010). Resistance spot weld performance and weld failure modes for dual phase and TRIP steels. In Failure mechanisms of advanced welding processes. https://doi.org/10.1016-/B978-1-84569-536-1.50003-2
  23. Vignesh, K., Perumal, A. E., & Velmurugan, P. (2017). Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel. 455–465. https://doi.org/10.1007-/s00170-017-0089-4
  24. Wan, X., Wang, Y., & Zhao, D. (2016). Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm. International Journal of Advanced Manufacturing Technology, 83(1–4), 545–559. https://doi.org/10.1007-/s00170-015-7545-9.
  25. Wiryosumarto, H., & Okumura, T. (2000). Teknologi Pengelasan Logam (8th ed.). Jakarta: PT Pradnya Paramita.