Main Article Content

Abstract

This study focuses on developing a prototype for a seawater desalination system powered by solar
panel. The desalination process is heated by a solar collector and 150 WP solar panel. The primary
objective is to design, develop, and evaluate the prototype's efficacy, affordability, and scalability.
The efficiency was measured by the quantity of freshwater produced per unit of solar energy. Of
the three distillation tests, it was determined that the addition of a heater enhanced the
performance of the system. However, the overall efficiency was limited due to the solar panel and
collector's low heat output. A positive correlation was observed between irradiance and
temperature, but incomplete evaporation indicated the need for additional research to optimize
the process. The system consisted of a solar collector, a heater, and a distillation apparatus. Three
distillation tests revealed that the addition of a heater improved the system's performance,
resulting in a maximum achievable efficiency of 0.99% and the production of 16 ml of fresh water.
This study demonstrates the potential for renewable energy sources to power seawater
desalination and lays the groundwork for future sustainable desalination technologies despite its
limitations.

Keywords

Seawater; Desalination; Solar collector; Solar panel; Distillation

Article Details

References

  1. Al-hotmani, O. M. A., Al-Obaidi, M. A., John, Y. M., Patel, R. and Mujtaba, I. M. (2022). Optimisation of hybrid MED-TVC and double reverse osmosis processes for producing different grades of water in a smart city. Desalination, 534, 115776. https://doi.org/10.1016-/j.desal.2022.115776.
  2. Alsarayreh, A. A., Al-Obaidi, M. A., Al-Hroub, A. M., Patel, R., and Mujtaba, I. M. (2020). Performance evaluation of reverse osmosis brackish water desalination plant with different recycled ratios of retentate. Comput. Chem. Eng., 135, 106729. doi: 10.1016/j.compchemeng.-2020.106729.
  3. Ali, A. , Tufa, R. A., Macedonio, F., Curcio, E. , and Drioli, E. (2017). Membrane technology in renewable- energy-driven desalination. Renew. Sustain. Energy Rev., 81, 1–21. doi: 10.1016-/j.rser.2017.07.047.
  4. Ali, E. S., Mohammed, R. H., Qasem, N. A. A., Zubair, S. M., and Askalany, A. (2021). Solar-powered ejector-based adsorption desalination system integrated with a humidification- dehumidification system. Energy Convers. Manag., 238, 114113. doi: 10.1016/j.enconman.-2021.114113.
  5. Antar, M. A., Bilton, A., Blanco J., and Zaragoza, G. (2012). Solar desalination. Annu. Rev. heat Transf., 15, 2012.
  6. Al-Obaidi, M. A., Rasn, K. H., Aladwani, S. H., Kadhom, M., and Mujtaba, I. M.(2022). Flexible design and operation of multi-stage reverse osmosis desalination process for producing different grades of water with maintenance and cleaning opportunity.Chem. Eng. Res. Des., 182, 525–543. doi: 10.1016/J.CHERD.2022.04.028.
  7. Al-Mamun, M. R., Karim, M. N., Nitun, N. A., Kader, S., Islam, M. S., and Khan, M. Z. H.(2021). Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environ. Technol. Innov., 22,101537. doi: 10.1016/j.eti.2021.101537.
  8. Al-Obaidi, M. A., Zubo, R. H. A., Rashid, F. L., Dakkama, H. J., Abd-Alhameed, R., and Mujtaba, I. M. (2022). Evaluation of Solar Energy Powered Seawater Desalination Processes: A Review. Energies, 15(18). doi: 10.3390/en15186562.
  9. Almerri, A. H., Al-Obaidi, M. A., Alsadaie, S. and Mujtaba, I. M. (2023). Modelling and simulation of industrial multistage flash desalination process with exergetic and thermodynamic analysis. A case study of Azzour seawater desalination plant,. 18(1), 73–95. doi:10.1515/cppm-2021-0040.
  10. Ahammad, T. R., Gomes, S. Z., and Sreekrishnan, J. (2008). Wastewater treatment forproductionofH2S- free biogas. J. Chem. Technol. Biotechnol., 83, 1163–1169.doi: 10.1002/jctb.
  11. Bernardo, P., and Drioli, E. (2010). Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Pet. Chem., 50(4), 271–282. doi: 10.1134-/S0965544110040043.
  12. Drioli, E., Brunetti, A., Di Profio, G., and Barbieri, G.(2012). Process intensification strategies and membrane engineering.Green Chem., 14(6), 1561–1572. doi: 10.1039/C2GC16668B.
  13. Drioli, E., Stankiewicz, A. I. and Macedonio, F. (2011). Membrane engineering in process intensification-An overview. J. Memb. Sci., 380(12),1–8. doi: 10.1016/j.memsci.2011.06.043.
  14. Eke, J., Yusuf, A., Giwa, A., and Sodiq, A. (2020).The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 495, 114633. doi: 10.1016/j.desal.2020.114633.
  15. Esmaeilion, F., Ahmadi, A., Hoseinzadeh, S., Aliehyaei, M., Makkeh, S. A., and Astiaso, G. D. (2021). Renewable energy desalination; a sustainable approach for water scarcity in arid lands. Int. J. Sustain. Eng., 14(6),1916–1942. doi: 10.1080/19397038.2021.1948143.
  16. Gude, V. G., Nirmalakhandan, N., and Deng, S.(2010). Renewable and sustainable approaches for desalination. Renewable and Sustainable Energy Reviews , 14(9), 2641-2654.doi: 10.1016-/j.rser.2010.06.008.
  17. Ibrahim, Y., Ismail, R. A., Ogungbenro, A., Pankratz, T., Banat, F., and Arafat, H.A. (2021) The sociopolitical factors impacting the adoption and proliferation of desalination: A critical review. Desalination, 498, 114798. doi: 10.1016/j.desal.2020.114798.
  18. Irena (2012). Water Desalination Using Renewable energy energy technology systems analysis programme. Int. Renew. Energy Agency, 1–28. Available: www.etsap.org-www.irena.org.
  19. Kim, T., Bamford, J., Gracida-Alvarez, U. R., and Benavides, P. T.(2022). Life Cycle Greenhouse Gas Emissions and Water and Fossil-Fuel Consumptions for Polyethylene Furanoate and Its Coproducts from Wheat Straw. ACS Sustain. Chem. Eng.,10(8), 2830–2843. doi: 10.1021-/acssuschemeng.1c08429.
  20. Mohamed, A. S. A., Ahmed, M. S., Maghrabie, H. M., and Shahdy, A. G.(2021). Desalination process using humidification–dehumidification technique: A detailed review. Int. J. Energy Res., 45(3),3698–3749, 2021, doi: 10.1002/er.6111.
  21. Pouyfaucon, A. B., and García-Rodríguez, L.(2018). Solar thermal-powered desalination: A viable solution for a potential market. Desalination, 435, 60–69. doi: 10.1016/j.desal.2017.12.025.
  22. Ritchie, H., and Roser, M. (2021). Clean Water and Sanitation. Our World Data.
  23. Salameh, T., Ghenai, C., Merabet, A.,and Alkasrawi, M. (2020). Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates. Energy, 190, 116475. doi: 10.1016/j.energy.2019.116475.
  24. United Nations Children’s Fund-UNICEF (2017). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines.Acces March 21, 2022. https://data.unicef.org-/resources/progress-drinking-water-sanitation-hygiene-2017-update-sdg-baselines.
  25. Virgili, F., Pankratz, T., and Gasson, J. (2016). IDA Desalination Yearbook 2015-2016. Media Analytics Limited.
  26. Xiang Z. (2020). DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas. Agric. Water Manag., 232, 106033. doi: 10.1016-/j.agwat.2020.106033.
  27. Yurtsever, A., Sahinkaya,E., and Çınar, O (2020). Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater. J. Water Process Eng., 33.doi: 10.1016/j.jwpe.2019.101088.
  28. Zhang, Y., Wang, R., Huang, P., Wang, X., and Wang, S. (2020) Risk evaluation of large-scale seawater desalination projects based on an integrated fuzzy comprehensive evaluation and analytic hierarchy process method. Desalination, 478, 114286. doi: 10.1016/j.desal.2019.114286.
  29. Zhang, L., Pang, M., Bahaj, A. B. S., Yang, Y., and Wang, C. (2021). Small hydropower development in China: Growing challenges and transition strategy. Renew. Sustain. Energy Rev., 137, 10653. doi: 10.1016/j.rser.2020.110653.