Main Article Content

Abstract

Penyakit jantung masih menjadi salah satu penyebab kematian utama di dunia, sehingga diperlukan diagnosis dini yang akurat untuk mengurangi risiko yang ditimbulkan. Kemajuan teknologi machine learning memberikan peluang baru untuk membantu tenaga medis dalam memprediksi penyakit jantung secara lebih efisien dan tepat. Penelitian ini bertujuan untuk mengevaluasi dan membandingkan kinerja dua algoritma pembelajaran terawasi yang populer, yaitu Random Forest dan Gradient Boosting, dalam klasifikasi penyakit jantung. Dataset yang digunakan terdiri dari 1.000 baris data dengan sejumlah fitur yang merepresentasikan berbagai faktor risiko penyakit jantung. Evaluasi dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest unggul dibandingkan Gradient Boosting dalam seluruh metrik evaluasi. Random Forest memperoleh akurasi sebesar 99,5%, sementara Gradient Boosting memperoleh 98,5%. Selain itu, Random Forest mencapai nilai sempurna (100%) pada presisi kelas 0, recall kelas 1, dan F1-score kelas 1, menunjukkan kemampuannya yang tinggi dalam klasifikasi penyakit jantung. Model yang dikembangkan ini memiliki potensi besar untuk diterapkan sebagai alat bantu pengambilan keputusan dalam sistem layanan kesehatan, terutama pada tahap skrining awal dan penilaian risiko pasien. Dengan mengidentifikasi pola dan fitur kunci yang berhubungan dengan penyakit jantung, model ini dapat mendukung tenaga medis dalam memberikan keputusan klinis yang lebih cepat dan tepat sasaran.

Keywords

penyakit jantung, klasifikasi, random forest, gradient boosting.

Article Details