Main Article Content

Abstract

Bogor Regency is an area that often experiences prolonged rainfall, especially during the rainy season. High rainfall causes problems such as floods and landslides. Therefore, accurate rainfall prediction is important for various needs, especially in disaster mitigation. This study aims to implement the Long Short-Term Memory (LSTM) algorithm as a model for prediction of historical rainfall data and use the Large Language Model (LLM) GEMMA 2 to provide interpretation of prediction results and recommendations based on the prediction results. The methods used include data collection from the BMKG online data website totaling 1804 data, data pre-processing, model building, model performance evaluation, and interpretation of results using LLM. The results of this study show that LSTM is able to produce the best performance by showing MSE 201.92 mm², Root Mean Square Error (RMSE) of 14.21 mm. the RMSE value shows an average error of 14.21 mm. In addition, the interpretation provided by LLM GEEMA 2 to help understand the prediction and provide practical recommendations for disaster mitigation due to rainfall.

Keywords

Rainfall Prediction LSTM Gemma 2 Bogor

Article Details

References

    [1] M. Ariska, S. Suhadi, S. Supari, M. Irfan, and I. Iskandar, “Annual and Interannual Rainfall Variability in Indonesia Using Empirical Orthogonal Function (EOF) Analysis and Its Response to Ocean-Atmosphere Dynamics,” Jurnal Ilmu Fisika, vol. 16, no. 2, pp. 151–165, 2024.
    [2] H. Setiawan, A. Wibowo, and S. Supriatna, “Pembuatan Peta Curah Hujan untuk Evaluasi Kesesuaian Rencana Tata Ruang Kawasan Hutan Kabupaten Bogor,” Geomedia Majalah Ilmiah dan Informasi Kegeografian, vol. 19, no. 2, pp. 113–121, Nov. 2021, doi: 10.21831/gm.v19i2.43227.
    [3] E. M. Lesik, H. L. Sianturi, A. S. Geru, and B. Bernandus, “Analisis Pola Hujan Dan Distribusi Hujan Berdasarkan Ketinggian Tempat Di Pulau Flores,” Jurnal Fisika : Fisika Sains dan Aplikasinya, vol. 5, no. 2, pp. 118–128, 2020, doi: 10.35508/fisa.v5i2.2451.
    [4] K. Sukajaya et al., “Analisis Pasca Bencana Tanah Longsor 1 Januari 2020 Dan Evaluasi Penataan Kawasan Di,” Jurnal Geografi Gea, vol. 20, no. 2, pp. 197–213, 2020.
    [5] Y. Hendra, H. Mukhtar, B. Baidarus, and R. Hafsari, “Prediksi Curah hujan di Kota Pekanbaru Menggunakan lSTM (Long Short Term Memory),” Journal of Software Engineering and Information Systems, vol. 3, no. 2, pp. 74–81, 2021, doi: 10.37859/seis.v3i2.5606.
    [6] J. Badriyah, A. Fariza, and T. Harsono, “Prediksi Curah Hujan Menggunakan Long Short Term Memory,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, p. 1297, 2022, doi: 10.30865/mib.v6i3.4008.
    [7] M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang,” Jurnal Repositor, vol. 2, no. 3, pp. 331–338, Mar. 2020, doi: 10.22219/repositor.v2i3.470.
    [8] S. A. Jofipasi, Admi Salma, Dodi Vionanda, and Dina Fitria, “Prediction Of Bogor City Rainfall Parameters Using Long Short Term Memory (LSTM),” UNP Journal of Statistics and Data Science, vol. 1, no. 5, pp. 434–440, Nov. 2023, doi: 10.24036/ujsds/vol1-iss5/110.
    [9] R. Farikhul Firdaus and I. V. Paputungan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory,” Jurnal Penelitian Inovatif, vol. 2, no. 3, pp. 453–460, 2022, doi: 10.54082/jupin.99.
    [10] A. Wijayanto, A. Sugiharto, and R. Santoso, “Identifikasi Dini Curah Hujan Berpotensi Banjir Menggunakan Algoritma Long Short-Term Memory (Lstm) Dan Isolation Forest,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 3, pp. 637–646, 2024, doi: 10.25126/jtiik.938718.
    [11] D. H. Fadillah et al., “Implementasi Lightgbm dan LLM Gemini pada Website Psychobot untuk Analisis Emosi Saat Bersosial Media,” Jurnal Riset dan Aplikasi Mahasiswa Informatika (JRAMI), vol. 6, no. 01, pp. 224–233, Jan. 2025, doi: 10.30998/jrami.v6i01.13500.
    [12] F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680.
    [13] Scikit-learn developers, “RobustScaler — scikit-learn 1.6.1 documentation.” Accessed: May 06, 2025. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
    [14] S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, and A. Muneer, “LSTM Inefficiency in Long-Term Dependencies Regression Problems,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 30, no. 3, pp. 16–31, 2023, doi: 10.37934/araset.30.3.1631.
    [15] A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow. New York: O’Reilly Media, 2019.
    [16] W. Surta, K. T. Basuki, E. S. Negara, and Y. N. Kunang, “Rainfall Prediction in Palembang City Using the GRU and LSTM methods,” Journal of Data Science, vol. 4, no. 2, 2023, [Online]. Available: http://eprints.intimal.edu.my/1730/