Main Article Content
Abstract
Recognition is one of the many problems encountered today, this problem has several ways to be solved. This research used Convolutional Neural Networks (CNN), which is a deep neural networks method as a means of face recognition, which has been proven to be widely used in face classification, using a dataset of male and female facial photos totaling 27,167 photos, of which 17,678 are male and 9,489 are male. woman. To avoid unbalanced data processing, the researchers disguised the photos of women and men so that the total photos used for the training amounted to 18,978 photos. Besides that, the researcher also added dropout as a test parameter. The author uses python to implement gender differences in the images in the data that has been prepared. For the preparation of the Convolutional Neural Networks model architecture the authors use several layers. Then the data will be trained before being tested with new data that has been prepared where the new data for testing is divided into two datasets to see if there are differences in accuracy results. What distinguishes the two datasets is the position of the photo and the background of the photo. Of the two existing datasets, the first dataset produces an average of 73.33%, while the second dataset produces the highest 84.34%.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- T. Abdi, “Fakta Baru Kasus Pernikahan Sesama Jenis di Jambi, Keluarga dari Kedua Belah Pihak Saling Bantah,” Tribun-Medan.com, url: FAKTA Baru Kasus Pernikahan Sesama Jenis di Jambi, Keluarga dari Kedua Belah Pihak Saling Bantah - Halaman 2 - Tribun-medan.com (tribunnews.com) [diakses 12 Oktober 2023]
- Josh Patterson & Adam Gibson, Deep learning A Pratctitionar’s Approach, vol. 29, no. 7553. 2019.
- AL Sigit Guntoro, Edy Julianto, and Djoko Budiyanto, “Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network,” J. Inform. Atma Jogja, vol. 3, no. 2, pp. 155–160, 2022, doi: 10.24002/jiaj.v3i2.6790.
- A. Zein, “Memprediksi Usia Dan Jenis Kelamin Menggunakan Convolutional Neural Networks,” Sainstech J. Penelit. dan Pengkaj. Sains dan Teknol., vol. 30, no. 1, pp. 1–7, 2020, doi: 10.37277/stch.v30i1.727.
- P. Purwanto, B. Dirgantoro Ir, and A. S. Nugroho Jati, “Implementasi Face Identification Dan Face Recognition Pada Kamera Pengawas Sebagai Pendeteksi Bahaya Implementation of Face Identification and Face Recognition on Security Camera As Threat Detector,” vol. 2, no. 1, p. 718, 2015.
- V. Amrizal and Q. Aini, Naskah Kecerdasan Buatan_2. 2013.
- P. C. Riau et al., “Dewan Redaksi”.
- N. Ketkar and J. Moolayil, Deep Learning with Python. 2021. doi: 10.1007/978-1-4842-5364-9.
- S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
- J. Shovic and A. Simpson, Python All in one. 2019.
- P. K. Hilaliyah, “Deteksi Dini Kanker Payudara Pada Citra Histopatologi Menggunakan Metode Convolution Neural Network (CNN),” pp. 65–72, 2021.
- D. Prasetyawan and S. ’Uyun, “Penentuan Emosi pada Video dengan Convolutional Neural Network,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 5, no. 1, pp. 23–35, 2020, doi: 10.14421/jiska.2020.51-04.
- N. S. B. Kusrorong, D. R. Sina, and N. D. Rumlaklak, “Kajian Machine Learning Dengan Komparasi Klasifikasi Prediksi Dataset Tenaga Kerja Non-Aktif,” J-Icon, vol. 7, no. 1, pp. 37–49, 2019.
- M. F. Naufal and S. F. Kusuma, “Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 6, p. 1293, 2021, doi: 10.25126/jtiik.2021865201.
- D. Frenza and R. Mukhaiyar, “Aplikasi Pengenalan Wajah Menggunakan Metode Adaptive Resonance Theory ( ART ),” Multidicsiplinary Res. Dev., vol. 3, no. 1, pp. 35–42, 2021, [Online]. Available: https://doi.org/10.31933/rrj.v3i3.392
- R. Rokhana et al., “Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, p. 59, 2019, doi: 10.22146/jnteti.v8i1.491.