Deep touch pressure for calming and comfort therapy from the perspective of contact mechanics: A review

Mohamad Izzur Maula¹,², Tri Indah Winarni²,³*, Muhammad Imam Ammarullah⁴,⁵, Ilham Yustar Afif²,⁶, Farhan Ali Husaini¹,⁴, M. Danny Pratama Lamura¹,², Jamari¹,²,**

¹ Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
² Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
³ Department of Anatomy, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
⁴ Department of Mechanics and Aerospace Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
⁵ Department of Mechanical Engineering, Faculty of Engineering, Universitas Pasundan, Bandung 40264, West Java, Indonesia
⁶ Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Semarang, Semarang 50273, Central Java, Indonesia

triwinarini@lecturer.undip.ac.id, **j.jamari@gmail.com**

Highlights:
- The role of mechanical contact on deep touch pressure (DTP) has been studied
- Contact area and the determination of pressure magnitude affect the success of deep touch pressure (DTP) therapy
- Contact mechanics aspects need to be considered in order to enhance deep touch pressure (DTP) therapy effectiveness

1. Introduction

Deep touch pressure (DTP) is a therapeutic technique that falls under the umbrella of touch therapy. It is gaining recognition as a promising intervention for individuals with sensory processing deficits. The primary aim of this practice is to generate a soothing and reassuring impact by evoking somatosensory perceptions through actions such as embracing, applying pressure, caressing, or providing gentle support [1–3]. DTP therapy has garnered significant attention and interest from...
a wide range of individuals, encompassing healthcare professionals, therapists, and individuals seeking personal relief. The perceived advantages of this phenomenon are thought to surpass limitations in sensory processing. According to available reports, DTP therapy has demonstrated efficacy in the reduction of muscle pain, mitigation of stress, and facilitation of general relaxation [4]. The sensory system is thought to experience a reduction in stress and anxiety levels through the application of DTP, leading to an enhanced state of tranquility and overall well-being for individuals. The predominant focus of recent research endeavors has been directed towards the assessment of the therapeutic intervention’s impact on both physiological and behavioral aspects [5]–[8].

Contact mechanics, a branch of mechanics studying solid behavior upon contact [9], is integral to understanding the surface interactions involved in DTP which is reliant on touch and pressure stimulation and encompasses factors such as material properties, pressure distribution, and duration of treatment. In the context highlighted by Van Kuilenburg [10], products in daily life, like clothing, are profoundly influenced by touch-contact behavior with the skin, emphasizing the importance of considering contact mechanics in design. This discipline offers insights into optimizing the comfort and functionality of products that interact with the body, ensuring the applied touch and pressure align with desired effects on the human sensory system. A diverse range of DTP tools have been developed, including non-wearable options such as large V or U-shaped beds, chair-shaped devices with several straps, and weighted blankets [11]–[15]. Additionally, there are wearable alternatives like compression garments, which include various approaches such as weighted vests, inflated vests, and stretched vests [16]–[18]. Illustrations of DTP tools are shown in Figure 1.

With many types of DTP tools that combine the type of material and touch/pressure mechanism, the approach of DTP in contact mechanics and tribology research still has many gaps to investigate. This provides exciting opportunities for future studies to explore and understand the potential applications of DTP principles in enhancing surface interactions and improving material design. Exploring the potential applications of DTP in contact mechanics and tribology research is significant as it paves the way for collaboration between the fields of health sciences and engineering. Integrating knowledge about therapeutic effects at the levels of human physiology and behavior with mechanical interactions between material surfaces can lead to innovative solutions that enhance comfort and improve the efficiency of mechanical systems. Nevertheless, despite the inherent connection between these actions and the disciplines of contact mechanics and tribology, there is a scarcity of research investigating these approaches within these fields.

Overall, bridging the gap between sensory therapy domains and engineering mechanics can yield significant benefits, not only for individuals needing sensory therapy but also for the development of technologies and design improvements affecting various aspects of our lives. Therefore, this study aims to gather previous studies and discuss the influence of differences in contact area in providing comfort, while also providing new insights into DTP therapy from the perspective of contact mechanics.
2. Methods

2.1. Search Strategy

This study was conducted based on PRISMA 2020 guidelines using systematic searches in Scopus and PubMed databases to identify relevant articles in the field of interest. The meticulous approach aimed to ensure unbiased retrieval of valuable literature and create a strong foundation for research and analysis. The search strategy included various keywords following Boolean phrase: ("deep pressure therapy" OR "deep pressure touch" OR "deep touch pressure" OR "weighted blanket" OR "weighted vest" OR "inflatable vest" OR "snug vest" OR "hug machine") AND ("therapy") NOT ("review").

2.2. Inclusion and Exclusion Criteria

The process of establishing inclusion and exclusion criteria in a research study is of utmost importance as it determines the characteristics of subjects or objects that will be included or excluded from the investigation. The inclusion criteria used in this study were as follows: (1) the study was written in English, (2) involved human participants, (3) the independent variable identified in the study was deep pressure, and (4) the dependent variable focused on comfort and related aspects, including sleeping disorder, attention, disruptive behavior, self-injurious behavior, or stereotypical behavior, commonly experienced by individuals with autism spectrum disorders [6], [7]. Articles written in languages other than English, articles with difficulties in accessing full texts, and product design articles without testing will be excluded from this study.

2.3. Data extraction

The selected studies underwent an evaluation process in which the DTP tools employed, the constituent materials of the DTP devices that come into contact with the user, the mechanism of touch or pressure, the specific site of the intervention on the body, and the outcomes of comfort or related aspects.

3. Results and Discussion

Scopus and PubMed databases were searched to cover all previous dates, with the last search on July 30, 2023. There were 119 articles were found, with 30 duplicates identified and removed. After screening the titles and abstracts, 41 articles were excluded as they did not meet the inclusion criteria. The exclusions encompassed one patent, two review articles, and thirty-eight articles that did not meet the eligibility criteria. A further 18 articles were excluded as they still met the exclusion criteria during the full-text examination. The authors have conducted a manual search and identified three additional papers, bringing the total number of publications to 33, which will be included in the synthesis. Figure 2 presents a flowchart that illustrates the methodology used in searching, and Table 1 provides a summary of the collected articles.

Figure 2. Search flow diagram
<table>
<thead>
<tr>
<th>Refs.</th>
<th>Therapeutic tools</th>
<th>Materials</th>
<th>Touch or pressures mechanism</th>
<th>Touch or pressures load</th>
<th>Intervention location</th>
<th>Outcomes in calming effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afif [6]</td>
<td>AHMPS inflated style; and pulled style</td>
<td>Synthetic leather</td>
<td>Pressed by inflated wraps and manual straps</td>
<td>0.65 psi (chest) and 0.65 psi (thigh) for inflated style; 0.81 psi (chest) and 0.81 psi (thigh) for pulled style</td>
<td>Chest and thigh</td>
<td>Supports</td>
</tr>
<tr>
<td>Baumgartner [19]</td>
<td>WB</td>
<td>Cotton and/or polyester blend</td>
<td>Weighted with a heavy blanket</td>
<td>5 lbs and 15 lbs</td>
<td>Torso</td>
<td>Supports</td>
</tr>
<tr>
<td>Biswas [20]</td>
<td>Sleeping bag with weight and vibration</td>
<td>Polyamide (outer), Neoprene (insulator)</td>
<td>Weighted with a heavy and vibrating sleeping bag</td>
<td>8% of body weight</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Chen [21]</td>
<td>Papoose board*</td>
<td>Non-rigid foam pad</td>
<td>Wrapped like a sleeping bag</td>
<td>Load is unknown</td>
<td>Head, torso, thigh</td>
<td>Supports</td>
</tr>
<tr>
<td>Cox [22]</td>
<td>WV</td>
<td>Denim</td>
<td>Weighted</td>
<td>5% of body weight</td>
<td>Torso</td>
<td>Not Supports</td>
</tr>
<tr>
<td>Davis [23]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>5 lbs</td>
<td>Torso</td>
<td>Not Supports</td>
</tr>
<tr>
<td>Edelson [24]</td>
<td>Hug machine</td>
<td>Foam-pad</td>
<td>Squeezed by V-shaped pad</td>
<td>According to their preferences</td>
<td>lateral parts of the body</td>
<td>Supports</td>
</tr>
<tr>
<td>Edwards [25]</td>
<td>Hand; and pillow</td>
<td>Skin; fabric is unknown</td>
<td>lightly palpated while head was cradled (with a pillow)</td>
<td>Load is unknown</td>
<td>sub-occipital muscles (the base of the head)</td>
<td>Supports</td>
</tr>
<tr>
<td>Ekholm [26]</td>
<td>WB</td>
<td>Chain blanket; fabric is unknown</td>
<td>Weighted with chain blanket</td>
<td>6 kg and 8 kg</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Foo [27]</td>
<td>CV</td>
<td>woven canvas fabric (front), foam mesh (back)</td>
<td>squeezed by vest's retractable shape memory alloy</td>
<td>Load is unknown</td>
<td>Torso</td>
<td>Supports</td>
</tr>
<tr>
<td>Gee [28]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>weighted with a heavy blanket</td>
<td>10% of the participants’ body weight</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Grandin [11]</td>
<td>Squeeze machine</td>
<td>Foam-pad</td>
<td>Squeezed by V-shaped pad</td>
<td>Adult: 60 psi; Children: 30-40 psi</td>
<td>lateral parts of the body</td>
<td>Supports</td>
</tr>
<tr>
<td>Gringras [29]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>carries a steel-pellet blanket</td>
<td>2.25 kg or 4.5 kg</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Hodgetts [30]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>5% of body weight</td>
<td>Torso</td>
<td>Not Supports</td>
</tr>
<tr>
<td>Kennert [31]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>Load is unknown</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Lin [32]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>10% of body weight</td>
<td>Torso</td>
<td>Supports</td>
</tr>
<tr>
<td>Lindstedt [33]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>Weighted with heavy blanket</td>
<td>Load is unknown</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Lo [35]</td>
<td>Sitting Hug Machine</td>
<td>Foam-pad</td>
<td>Squeezed by U-shaped pad</td>
<td>Load is unknown</td>
<td>lateral parts of the body (left and right sides)</td>
<td>Supports</td>
</tr>
<tr>
<td>Lönn [34]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>Weighting with fiber-WB</td>
<td>4-10 kg</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Losinski [5]</td>
<td>CV; WB</td>
<td>Neoprene (CV); - (WB)</td>
<td>Inflated vest compressing the body; WB is draped on the back while sitting</td>
<td>Load is unknown (CV); 6 lbs (WB)</td>
<td>Torso; back of the body</td>
<td>Supports</td>
</tr>
<tr>
<td>McGinnis [35]</td>
<td>Gym mat, pillows, and a blanket</td>
<td>fabric is unknown</td>
<td>touch and engage each object for 10 s</td>
<td>Load is unknown</td>
<td>Palm hand</td>
<td>Supports</td>
</tr>
<tr>
<td>Moore [36]</td>
<td>Sensory brush</td>
<td>Soft brush</td>
<td>Brushing; pushing and pulling motion</td>
<td>Load is unknown</td>
<td>Shoulders to hands, hips to feet, chest and back</td>
<td>Not Supports</td>
</tr>
</tbody>
</table>
From the various DTP tools, considering the distribution of pressure applied to the body, they can be categorized into four classes: weighted blankets, which provide passive pressure sensations across almost the entire body; compression vests, offering active pressure sensations from the garment to the torso; weighted vests, providing active pressure sensations both from the garment worn (though not too tight) and the load that predominantly targets the shoulders (indicated in red); and other types such as AHMPS, offering active pressure sensations through straps on the chest and thighs, and U or V-shaped beds, providing active pressure sensations on the sides of the body. The distribution of pressure applied to the body by various DTP tools is illustrated in Figure 3.

Table 1. (cont.)
Summary of detailed specifications for the use of DTP as a comfort stimulation therapy
[AHMPS= Autism Hug Machine Portable Seat; WB= Weighted Blanket; WV= Weighted Vest; CV= Compression Vest]

<table>
<thead>
<tr>
<th>Refs.</th>
<th>Therapeutic tools</th>
<th>Materials</th>
<th>Touch or pressures mechanism</th>
<th>Touch or pressures load</th>
<th>Intervention location</th>
<th>Outcomes in calming effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakamura [37]</td>
<td>WB</td>
<td>soft-touch quilted fabric</td>
<td>Weighted with fiber-filled blanket</td>
<td>6 kg</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Nouman Aslam [38]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>Weighted with heavy blanket</td>
<td>Load is unknown</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Novak [39]</td>
<td>WB</td>
<td>fabric is unknown</td>
<td>Weighted with heavy blanket</td>
<td>Load is unknown</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Odeus [40]</td>
<td>WB</td>
<td>Ball blanket; fibre blanket; chain blanket</td>
<td>Weighted with 3 types of heavy blanket</td>
<td>The weight of the WB increased with increasing age</td>
<td>Whole body</td>
<td>Supports</td>
</tr>
<tr>
<td>Olson [41]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>5% and 10% of body weight</td>
<td>Torso (slightly above the scapula borders)</td>
<td>Supports</td>
</tr>
<tr>
<td>Quigley [42]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>5% and 10% of body weight</td>
<td>Torso</td>
<td>Not Supports</td>
</tr>
<tr>
<td>Reichow [43]</td>
<td>WV</td>
<td>fabric is unknown</td>
<td>Weighted</td>
<td>5% of the body weight</td>
<td>Torso</td>
<td>Not Supports</td>
</tr>
<tr>
<td>Reynolds [44]</td>
<td>CV</td>
<td>fabric is unknown</td>
<td>Inflated vest compressing the body</td>
<td>Firm hug</td>
<td>Chest and rib cage</td>
<td>Supports</td>
</tr>
<tr>
<td>Summe [45]</td>
<td>WB</td>
<td>Cotton and polyblend filled with non-molding polypellets</td>
<td>WB was placed over the swaddled infants in muslin or cotton wrap</td>
<td>1 lb (for infant)</td>
<td>Front body</td>
<td>Supports</td>
</tr>
<tr>
<td>VandenBerg [46]</td>
<td>WV</td>
<td>Denim</td>
<td>Weighting</td>
<td>5% of body weight</td>
<td>Torso</td>
<td>Supports</td>
</tr>
<tr>
<td>Watkins [47]</td>
<td>CV</td>
<td>polyester, spandex, bamboo, and cotton</td>
<td>Inflated vest compressing the body</td>
<td>Load is unknown</td>
<td>Torso (shoulders, back, and sides)</td>
<td>Not Supports</td>
</tr>
</tbody>
</table>

Figure 3. Distribution of contact area of weighted blanket (A), compression vest (B), weighted vest (C), Autism Hug Machine Portable Seat (D), and Squeeze machine (E)
After conducting a comprehensive review of the relevant literature, the results were categorized based on the specific DTP tool employed and its associated therapeutic effects, as depicted in Figure 4. Additionally, Figure 5 illustrates the distribution of studies that consider the applied pressure and those that do not, in relation to the overall treatment outcomes.

DTP has become one of the calming stimulation therapies that apply pressure to various parts of the body to stimulate the somatosensory system. The pressure received, like the sensation of being hugged, not only has psychological relaxation effects but also provides physiological stimulation. The application of pressure involves elements from the discipline of physics, sensory therapeutic effects from the biomedical field, and the goal of providing psychological relaxation and comfort. This multidisciplinary nature of DTP therapy requires an in-depth exploration of all its aspects to enhance its benefits for humanity.

Duvall stated in his hypothesis that pressure distribution could be a crucial aspect in determining the success of DTP therapy [48]. However, no studies have yet examined this relationship. The studies compiled in this review were then divided based on the therapy’s outcomes, as displayed in Figure 4, which shows that the therapy with the most support for calming stimulation is provided by weighted blankets [5], [19], [38]–[40], [45], [20], [26], [28], [29], [31], [33], [34], [37] followed by AHMPS [6], Squeeze machine [11], [24], compression vests [5], [15], [21], [27], [44], and then weighted vests [32], [41], [46]. These results show that DTP, with a larger contact area, has been proven to provide a better calming effect. Maula et al. [8] also reported that the broader contact area provided by inflatable AHMPS gives a more calming effect compared to the manual pull AHMPS. This finding supports Duvall’s hypothesis and provides insight into the relationship that a larger contact area for DTP application may increase the likelihood of successful calming stimulation.

Each type of DTP tool has its pressure mechanism, and the pressure load provided also varies. Some determine the pressure load based on occupational therapist recommendations or the user’s age, while others do not specify the pressure load in their studies. According to the findings presented in Figure 5, the distribution shows that studies yielding positive effects are mostly those that consider the pressure load used, whether based on comparative studies, occupational therapist recommendations, or user age. This observation is consistent with Duvall’s hypothesis, stating that pressure distribution plays a significant role that should be considered.

4. Conclusion

This review study indicates that wider contact areas of DTP tools across the body influence the efficacy of DTP therapy by providing a better calming effect. This observation implies the importance of using appropriate DTP tools and techniques to ensure that the therapy is effective. Future research could explore the optimal contact area of DTP tools and the most effective techniques for administering DTP therapy.
Acknowledgements

The authors would like to extend their heartfelt appreciation to all those who generously offered suggestions and feedback during this work, especially Prof. Dr. Tauviqirrahman and Dr.-Ing Ismooyo Haryanto.

Authors’ Declaration

Authors’ contributions and responsibilities - The authors made substantial contributions to the conception and design of the study.

Funding – This research is funded by the Ministry of Education, Culture, Research, and Technology of Indonesia through PDUPT Research Grant number 225-84/UN7.6.1/PP/2022.

Availability of data and materials - All data are available from the authors.

Competing interests - The authors declare no competing interest.

Additional information – No additional information from the authors.

References

[45] V. Summe, R. B. Baker, and M. M. Eichel, “Safety, Feasibility, and Effectiveness of Weighted Blankets in the Care of Infants With Neonatal Abstinence Syndrome: A Crossover Randomized Controlled Trial.,” Advances in neonatal care : official journal of the National Association of
