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This article 
contributes to: 

  

Highlights: 

• The RMS method is used to optimize air 
suspension parameters, enhancing 
vehicle stability and comfort. 

• Key parameters like orifice resistance, air 
spring volume, and auxiliary volume are 
optimized using a dimensionless model. 

• The optimized system reduces sprung 
mass acceleration and improves handling, 
balancing stability and comfort. 

 

Abstract 

This study focused on the optimization of air suspension systems (ASs) for road vehicles concerning 
on-ride and handling criteria. A quarter DOF vehicle model is used in this study to develop an 
optimized system based on nonlinear equations. The extracted equations are then linearized and 
transformed into dimensionless form to gain insights into the system's behavior. By employing the 
Root-Mean-Square (RMS) method, the dimensionless equations are utilized to optimize the system 
parameters focused on stability and ride comfort. The five main components are attached in the 
model which consisted of the sprung mass (SM), unsprung mass (USM), gas spring (GS), auxiliary 
reservoir (AR), and orifice (O). The optimization procedure involved adjustment to the orifice 
resistance coefficient, air spring volume, air spring area, and auxiliary volume using the RMS-based 
method. Simulation analysis revealed the superior performance of the RMS-optimized system in 
both ride quality and handling. The study concludes by emphasizing the advantages of utilizing the 
RMS method for optimizing air suspension, resulting in decreased sprung mass acceleration and 
enhanced handling qualities. Selecting the appropriate design point for the suspension system 
based on the method outlined in this article can ensure both stability and comfort in the vehicle 
simultaneously. 

Keywords: Air Suspension system; Optimization; Ride comfort; Handling performance; Root-
Mean-Square method 

1. Introduction 
High demand for ride comfort in road vehicles has been taken main consideration by car 

manufacturers for many years. The main actor in the ride comfort of road vehicles is the suspension 
which consists of three main parts: the air spring, an auxiliary reservoir, and an orifice. The 
traditional suspension systems cannot be longer proposed to address such issues adequately. One 
of the gentle features currently presented in road vehicle technology is the air suspension system 
(ASs). The ASs offers advantages over mechanical suspensions, such as adjustable ride height, 
reduced weight, variable carrying capacity, and reduced structural noise transmission [1]–[3]. This 
system is equipped with a ride comfort system (RCs), handling performance (HP), dynamic 
adjustability, and a control system.  

For years, road vehicle experts trying to increase the performance of ASs to be more 
adjustable and adaptable in various road conditions. The design and optimization of ASSs have 
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been extensively studied in recent years [3]–[8], where Hostens and Romon demonstrated the use 
of pneumatic systems in combined cabin vibrations affect the human body [4].  

Essentially, the key AS design parameters involves initial air spring volume and pressure, air 
spring cross-sectional area, orifice resistance coefficient, and auxiliary reservoir (AR) volume. An 
approach using orifice resistance between the air spring and AR to enhance damping was done 
successfully by Toyofuku et al., [5]. An optimized ASs model had been improved by Quaglia et al. 
[6] via a 1-DOF quarter model to minimize the peak displacement transmissibility of the Sprung 
Mass (SM). Meanwhile, Nieto et al. presented an analytical model of a pneumatic suspension based 
on experimental characterization for a 1-DOF quarter car model [7]. In recent literature, 
approaches like the global-guidance chaotic multi-objective particle swarm optimization and GA-
tuned H∞ roll acceleration controllers have shown effectiveness in balancing performance and 
computational efficiency in suspension optimization [9], [10]. These methods provide alternative 
frameworks that can offer rapid computation and dynamic adaptability, though the RMS-based 
optimization in this study demonstrates comparable effectiveness with a lower computational 
burden. 

The analytical model should be aligned well with experimental measurements of stiffness, 
damping factor, and transmissibility within a reasonable operating range for the ASs. The dynamic 
behavior of the ASs can be enhanced by appropriately selected sizes of its elements, particularly 
the volumes of the air spring and reservoir. An approach through thermodynamic models has been 
developed to analyze the behavior of air springs due to the presence of air [11]. Zheng et al. [12] 
studied an analytical model for an air spring with an auxiliary chamber including its nonlinear 
characteristics theoretically and experimentally. Additionally, emerging multi-objective 
optimization strategies, such as those described by Nakhaie Jazar and Alkhatib [13], have further 
enhanced the performance of these systems in terms of both ride comfort and handling stability. 
These developments underscore the shift towards optimized, adjustable suspension systems 
capable of meeting the high-performance demands of modern road vehicles. 

Gui et al. [14] conducted a study on a semi-active suspension system utilizing a magneto-
rheological damper for off-road vehicles. The focus was on assessing the system's ability to 
enhance both RC and HP characteristics during off-road conditions. It introduced an integrated 
control system that optimized the suspension response to effectively attenuate vibrations, 
improving the overall ride quality and handling stability. Shi et al. developed a self-powered active 
vehicle suspension using a novel dual-function active electromagnetic damper (DF-AEMD) to 
provide simultaneous force tracking and energy harvesting functions for both the passenger's ride 
comfort and the road holding of the vehicle. Meanwhile, Yatak et al. [15] proposes a fuzzy logic 
control strategy to enhance ride comfort and road holding dynamics for a half-vehicle active 
suspension system. heir study introduced a fuzzy logic controller that allowed the active 
suspension system to adapt in real time, effectively reducing vibrations and impacts transmitted 
to the vehicle's occupants, thus enhancing ride comfort. 

Research on optimizing neuron weights has shown promising results in control applications. 
For example, the study by Nazemi et al. [16] on the control of a GT Car’s center of gravity (CG) 
height using a series of active variable geometry suspensions demonstrates how such approaches 
can dynamically adjust system parameters to optimize ride comfort and stability. Additionally, 
Mesdaghi and Mollajafari. [17] explored optimization strategies for energy efficiency in plug-in fuel 
cell vehicles, showing how neural weights can improve adaptive responses to external driving 
conditions. On the other hand, Significant research has been conducted in recent years on 
modeling and controlling active and semi-active air suspension systems, with their foundation 
typically based on the quarter-car model [18], [19]. Reviews of these studies can be found in the 
works of Sorli et al. [20] and Ferraresi et al. [21]. Sometimes, an inerter element [22], [23] has been 
incorporated into the air suspension system, resulting in a new model referred to as IASD (Inerter-
Augmented Suspension Design). However, the complexity of existing models often restricts their 
applicability, as they tend to focus on either single-objective optimization or limited vehicle 
configurations [24], [25]. Despite advancements, a notable gap exists in developing an optimization 
method that provides a balance between comfort and handling performance across varied terrains 
and dynamic conditions [26]. This study addresses these gaps by implementing a robust Root-
Mean-Square (RMS) optimization approach, which is designed to improve suspension performance 
through refined control over key parameters such as orifice resistance, air spring volume, and 
auxiliary reservoir volume. By doing so, this study presents a comprehensive methodology 
applicable across multiple road conditions, bridging the gap between complex theoretical models 
and practical applications in road vehicles. 
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By utilizing optimization techniques, their research aimed to determine the optimal values 
for suspension parameters, with the goal of minimizing vibrations and improving the overall ride 
quality of the vehicle while maintaining satisfactory handling and stability. This study focused on 
optimizing a two-DOF air-suspended quarter car model via mathematical modelling and simulation 
analysis to predict its performance under various conditions. This model comprises five main 
components i.e. sprung mass (SM), unsprung mass (UM), gas spring (GS), auxiliary reservoir (AR), 
and orifice. The RMS-based method [13] is utilized in the optimization of the system via the orifice 
resistance coefficient, air spring volume, air spring area, and auxiliary volume. Subsequently, the 
simulations were performed on the RMS-optimized system for validation based on ride quality and 
handling performance. Finally, both RMS-optimized systems of ride and handling are compared to 
demonstrate both improved performances. This is aimed at allowing experts to explore a wide 
range of design parameters efficiently and effectively. 

To communicate the unique contributions of this study clearly, we have outlined them as 
follows: 

Enhanced Ride and Handling Performance: This study develops an optimized air suspension 
system (AS) model that effectively balances ride comfort and handling through parameter 
adjustments. 

Novel Optimization Methodology: A Root-Mean-Square (RMS)-based optimization approach 
is applied, focusing on critical parameters like orifice resistance, air spring volume, and auxiliary 
reservoir volume, demonstrating significant improvement in vehicle stability and comfort. 

Comprehensive Model Validation: The optimized model undergoes extensive simulation 
analysis, validated in MATLAB/SIMULINK, to ensure the robustness of the proposed design. 

Design Insights for Industry Applications: This study provides actionable design insights, with 
detailed findings on optimal parameter values for suspension components, applicable in real-world 
vehicle suspension systems. 

2. Method 

2.1. Nonlinear Model 

In vehicle dynamics, a quarter-car model is commonly used to simplify the complex dynamics 
of a vehicle's suspension system into manageable components for analysis and design purposes 
[27]–[29]. This model offers understanding and valuable insights into suspension system design 
and its optimization needed by car manufacturers and experts. A quarter car model is composed 
of three subsystems i.e. the air suspension, the sprung mass, and the unsprung mass. The air 
suspension system uses air springs (or airbags) to support the vehicle's weight and absorb road 
disturbances. This system enables the management of ride height and stiffness based on driving 
conditions. Technically, an air suspension system is equipped with three integrated subsystems i.e. 
the gas spring, the auxiliary reservoir, and the fluidic resistance. The auxiliary reservoir and fluidic 
resistance collectively form the damping system which is responsible for dampening oscillations. 
The air spring system used in this study features a nonlinear stiffness characteristic, designed to 
adapt based on the load and compression state. Damping characteristics were modeled as 
nonlinear, aligning with empirical data on air spring systems. A standard Magic Formula tire model 
was applied to simulate tire behaviour accurately. Additionally, chamber pressure variations during 
compression and rebound were analyzed, providing insights into pressure changes that impact 
damping efficiency. These parameters are essential to model realistic air spring performance, as 
they affect stability during rapid dynamic transitions. Theoretically, this system can be analyzed by 
using Newton's second law expressed in the following equations: 

𝑚𝑠�̈�𝑠 − 𝐹𝑎𝑠 = 0 (1) 

𝑚𝑢 �̈�𝑢 + 𝐹𝑎𝑠 − 𝑘𝑡(𝑧𝑢 − 𝑧) = 0 (2) 

The force exerted by the air spring can be written as follows: 

𝐹𝑎𝑠 = (𝑃1 − 𝑃𝐴)𝐴 
(3) 

where the force (𝐹𝑎𝑠) is proportional to the air spring internal pressure (𝑃1), the initial pressure of 
the air spring (𝑃𝐴), and the air spring effective area (A). If the area (A) does not fit the geometrically 
defined value, thus 𝐹𝑎𝑠 is computed based on varied heights (h) via 𝑃1 . Therefore, area (A) in 
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Equation (3) can be found with A=A(𝑃1 , h). It is assumed as a first approximation when 𝑃1  is 
relatively modest in experimental observation [12].  

The mass flow rate (�̇�) from the air spring to the reservoir can be expressed by the continuity 
equation as follows: 

𝐺 = −�̇� = −�̇�1𝑉1 − �̇�1𝜌1 (4) 

The flow rate will become positive when filling. The density of the polytropic transformation 
of exponent n, where 𝑃1𝑉1

𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, is exprressed as follows:  

𝜌1 =
𝑃10

𝑅𝑇10

(
𝑃1

𝑃10

)1/𝑛 (5) 

The internal volume of the air spring (V1) can be seen as a nonlinear function of h, since 
V1=V1(h(t)), deriving and subsisting yields the pressure gradient 𝑃1 as follows: 

�̇�1 = −
𝑛𝑅𝑇20

𝑉1(ℎ(𝑡))
(

𝑃1

𝑃10

)
𝑛−1

𝑛 𝐺 −
𝑛𝑃1

𝑉1

�̇�1(ℎ(𝑡)) (6) 

Here, V1 and P1 represent the instantaneous volume and pressure of the air spring, while the 
volume of the air spring (V10) and the pressure of the air spring (P10) denote their respective initial 
values. The Gradient of the force exerted by spring (𝐹𝑎𝑠) is: 

�̇�𝑎𝑠 = (−
𝑛𝑅𝑇20

𝑉1(ℎ(𝑡))
(

𝑃1

𝑃10

)
𝑛−1

𝑛 𝐺 −
𝑛𝑃1

𝑉1

�̇�1(ℎ(𝑡))) 𝐴(ℎ(𝑡)) + (𝑃1 − 𝑃𝐴)�̇�(ℎ(𝑡)) (7) 

Similar steps in obtaining Equation (6), are then used at the reservoir end to link the mass 

flow rate to the reservoir pressure. Since the walls of the reservoir are assumed rigid, thus �̇�2 is 
equal to zero. Therefore: 

𝐺 =
𝑑(𝜌2𝑉2)

𝑑𝑡
=

𝑑𝜌2

𝑑𝑡
𝑉2 (8) 

and assumed polytrophic transformation is: 

�̇�2 =
𝑛𝑅𝑇20

𝑉2

(
𝑃2

𝑃20

)
𝑛−1

𝑛 𝐺 (9) 

where 𝑃2  is the AR pressure. The rate of change of reservoir pressure connected to a pipe is the 
similar rate in a discharge process [30], [31]. The fluidic resistance is a highly nonlinear component, 
when the flow condition through it may be sonic or non-sonic. The rate through the resistance can 
be defined versus pressure at its end either by using the analytic function or by mapping 
experimental data. In the first case, which referred to ISO 6358, the flow through the orifice is 
expressed as follows: 

𝐺 = 𝐶𝑃𝑈𝜌𝐴𝑁𝑅√
𝑇𝐴𝑁𝑅

𝑇𝑈

. 𝑠𝑖𝑔𝑛(𝑃1 − 𝑃2)   ;      0 <
𝑃𝐷

𝑃𝑈

< 𝑏 

(10) 

𝐺 = 𝐶𝑃𝑈𝜌𝐴𝑁𝑅√
𝑇𝐴𝑁𝑅

𝑇𝑈

.
√

1 − (

𝑃𝐷

𝑃𝑈
− 𝑏

1 − 𝑏
)2𝑠𝑖𝑔𝑛(𝑃1 − 𝑃2)  ;    𝑏 <

𝑃𝐷

𝑃𝑈

< 1 

where pressure 𝑃𝑈  (P upstream) and 𝑃𝐷  (P downstream) are defined as: 

𝑃𝑈 = 𝑚𝑎𝑥( 𝑃1, 𝑃2); 𝑃𝐷 = 𝑚𝑖𝑛( 𝑃1 , 𝑃2) (11) 

and the nonlinear air spring force obtains by integration of Fairspring. Equations (1), (2), (6), (7), 
(9), and (10) are all deferential equations of this system. Numerical simulation can be performed 
by using appropriate software such as MATLAB/SIMULINK [32], [33]. The data which have been 
defined in Table 1 have been used to obtain the frequency response of the nonlinear system. This 
study employs a 2-DOF vibration model focusing on the vertical dynamics of sprung and unsprung 
masses. Parameters such as Kroll and Kpitch, which are relevant for roll and pitch dynamics, were not 
utilized as these dynamics fall outside the scope of the current work. The model prioritizes ride 
comfort and vertical stability optimization. 
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Table 1.  
The simulation data 

Paramenet (unit) Value Paramenet (unit) Value 

Static spring height (m) 0.165 SM (Kg) 285 

Effective area for h=h0 (m2) 0.01667 Auxiliary volume (m3) 0.012 

Abs. pressure P0=P0(h0, m) (Pa) 2.678E5 𝛼 = 𝑑𝐴1 𝑑ℎ⁄ |𝐿 -0.1138 

𝜐 = 𝑑𝑉1 𝑑ℎ⁄ |𝐿 (m2) 0.01686 UM (Kg) 50 

Sprung volume for h=h0 (m3) 0.00292 Stiffness kt (N/m) 80000 

 
The models of the air spring and the full vehicle presented in this study align closely with 

those utilized in the previous work [19], where the air spring subsystem and the full suspension 
model were extensively validated through MATLAB/SIMULINK simulations and theoretical 
comparisons. Specifically: the air spring force model was validated using Laplace-domain motion 
equations and linearized to capture its dynamics across varying operational conditions, 
comparative simulations between classical, air suspension, and AISD models demonstrated the 
robustness of the air spring in improving ride comfort and stability metrics. 

2.2. Linearized Model 

For linearizing of 2-DOF nonlinear quarter car model, the air spring force (𝐹𝑎𝑠) must be 
linearized beforehand. The linearization of 𝐹𝑎𝑠 is done using Taylor series expansion close to the 
point location of L. This linearization point is tabulated in Table 2. According to Table 2, linearizing 
Equation (6) gives the following: 

�̇�1 = −
𝑛𝑅𝑇20

𝑉10

𝐺 −
𝑛𝑃10𝜐

𝑉10

ℎ̇1 (12) 

�̇�(ℎ) =
𝑑𝑉

𝑑ℎ1

𝑑ℎ1

𝑑𝑡
= 𝜐ℎ̇1 (13) 

Linearizing Equation (7) yields: 

�̇�𝑎𝑠 = (−
𝑛𝑅𝑇20

𝑉10

𝐺 −
𝑛𝑃10𝜐

𝑉10

ℎ̇1)𝐴0 + (𝑃1 − 𝑃𝐴)𝛼ℎ̇1 (14) 

�̇�(ℎ) =
𝑑𝐴

𝑑ℎ1

𝑑ℎ1

𝑑𝑡
= 𝛼ℎ̇1 (15) 

 
Table 2.  

Definition of 
linearization point 

𝑃2𝐿 = 𝑃0  𝑃1𝐿 = 𝑃0 𝐺𝐿 = �̇�𝐿 = 0 𝑉1𝐿 = 𝑉10 �̇�2𝐿 = 0 

�̇�1𝐿 = 0 𝑉2𝐿 = 𝑉20 ℎ̇𝐿 = 0 𝑉1𝐿 = 0 𝑑𝐴 𝑑ℎ⁄ |𝐿 = 0 

𝑑𝑉 𝑑ℎ⁄ |𝐿 = 0 ℎ𝐿 = ℎ0 𝐴𝐿 = 𝐴0   

 
If the suspension dynamics are very fast, the pressure waves do not have time to reach the 

reservoir. Therefore, at high frequencies, the suspension behaves like a closed system formed 
(G=0) by the air spring alone. The stiffness in this case is given by: 

𝑘 =
𝑑𝐹𝑎𝑠

𝑑𝑧
= −

𝑛𝑃10𝜐𝐴0

𝑉10

ℎ̇1 + (𝑃1 − 𝑃𝐴)𝛼ℎ̇ (16) 

Defining 𝑘𝑎  and 𝑘𝑣1, thus yields: 

𝑘𝑣𝑙 =
𝑛𝑃10𝑣𝑃0

𝑉10

 (17) 

𝑘𝑎 = 𝛼(𝑃10 − 𝑃𝐴) (18) 

linearizing the reservoir model Equation (9) gives: 

�̇�2 =
𝑛𝑅𝑇20

𝑉2

𝐺 (19) 



Armansyah et al.  

 

Mechanical Engineering for Society and Industry, Vol.4 No.2 (2024) 282 

 

Equation (10) is expressed that tangent at the point of linearization is a flow rate. The secant 
linearization is opted to represent the flow rate over a significant range of pressure drops as 
follows: 

𝑃1 − 𝑃2 = 𝑅𝐹𝐺 (20) 

where the parameter 𝑅𝐹 defined as the linear resistance is related to conductance expressed as: 

𝑅𝐹 =
1 − 𝑏∗

𝜌𝐴𝑁𝑅 × 𝐶
 (21) 

where, b < b* < 1. The selection of b* will impact the amplitude of the oscillated pressure near the 
linearization point. The critical ratio b signifies the closer values of b* when the oscillations get 
higher. When the suspension dynamics are very slow, the pressure of air spring and AR are equal. 
Therefore, at low frequencies, the suspension behaves like without a resistance system (𝑅𝐹 = 0). 
The stiffness in this case is expressed as: 

𝑘 =
𝑑𝐹𝑎𝑠

𝑑𝑧
= −

𝑛𝑃10𝜐𝐴0

𝑉10 + 𝑉20

ℎ̇1 + (𝑃1 − 𝑃𝐴)𝛼ℎ̇ (22) 

by defining 𝑘𝑣12, then yields 

𝑘𝑣12 = 𝑛𝑃10𝜐𝐴0/(𝑉10 + 𝑉20) (23) 

Linearizing the reservoir model provided by Equation (9), then revealed: 

�̇�2 =
𝑛𝑅𝑇0

𝑉20

𝐺 (24) 

Laplace transform is then applied to express the relationship within the functions according 
to suspension height h and air spring force F, as the following: 

�̄�𝑎𝑠

ℎ̄
= −(𝑘𝑣12 + 𝑘𝑎)

𝑠𝑅𝐹𝐶2
𝑘𝑣12

𝑘𝑣1
(

𝑘𝑣1 + 𝑘𝑎

𝑘𝑣12 + 𝑘𝑎
) + 1

𝑠𝑅𝐹𝐶2
𝑘𝑣12

𝑘𝑣1
+ 1

 (25) 

where: 

�̄�𝑠

�̄�
=

1 +
𝑘𝑠

𝑘𝑠𝑣𝑘𝑡
𝑠

(1 +
𝐶2𝑘𝑠𝑘𝑡𝑘𝑣12𝑅𝐹

𝑘𝑣1𝑘𝑠𝑣
𝑠 +

𝑘𝑠𝑣𝑚𝑠 + 𝑘𝑡𝑚𝑠 + 𝑘𝑠𝑣𝑚𝑢

𝑘𝑠𝑣𝑘𝑡
𝑠2 +

𝐶2𝑘𝑠𝑘𝑣12𝑅𝐹𝑚𝑠 + 𝐶2𝑘𝑡𝑘𝑣12𝑅𝐹𝑚𝑠 + 𝐶2𝑘𝑠𝑘𝑣12𝑅𝐹𝑚𝑢

𝑘𝑣1𝑘𝑠𝑣𝑘𝑡
𝑠3

+
𝑚𝑠𝑚𝑢

𝑘𝑠𝑣𝑘𝑡
𝑠4 +

𝐶2𝑘𝑣12𝑅𝐹𝑚𝑠𝑚𝑢

𝑘𝑣1𝑘𝑠𝑣𝑘𝑡
𝑠5)

 

(26) 

 
Figure 1 shows the results of 

the system's frequency response for 
a 2 mm amplitude road excitation, 
for different values of fluidic 
resistance 𝑅𝐹. Meanwhile, Figure 2 
compares linear and nonlinear 
models for the smallest and the 
largest values of 𝑅𝐹. The results for 
the nonlinear model correspond 
very well with the results of a linear 
model. 
 
 
 
 
 

Figure 1. 
   Frequency response 

for the linear system 
(n=1.4) 
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Figure 2. 
Comparison of the 

linear model and 
nonlinear model: 

(a) RF=8*106 Pa/(Kg/s) 

 C=5*10-9 m3/(s.Pa); 
(b) RF=0.5*106 Pa/(Kg/s) 
 C=80*10-9 m3/(s.Pa)   

2.3. Dimensionless Model 

In this phase, investigating the frequency response and developing an optimization procedure 
via frequency response, harmonic excitation z=Zeiωt, through a periodic solution in the form of 
zu=Zueiωt and zs=Zseiωt, where Zu and Zs are the complex amplitude. By defining μ =│Zs/Z│, τ =│1-
Zu/Z│, and η =│(Zs-Zu)/Z│, as transmissibility functions for SM, UM, and wheel travel, respectively, 
and with some necessary manipulations we obtained: 

𝜇 =
√(1 + 𝛼1𝑟2 + 𝛼2𝑟4 + 𝛼3𝑟6)2 + (𝛼4𝑟3 + 𝛼5𝑟5)2

1 + 𝛼19𝑟2 + 𝛼20𝑟4 + 𝛼21𝑟6 + 𝛼22𝑟8 + 𝛼23𝑟10
 (27) 

𝜏 =
√(𝛼6𝑟3 + 𝛼7𝑟5 + 𝛼8𝑟7)2 + (1 + 𝛼9𝑟2 + 𝛼10𝑟4 + 𝛼11𝑟6 + 𝛼12𝑟8)2

1 + 𝛼19𝑟2 + 𝛼20𝑟4 + 𝛼21𝑟6 + 𝛼22𝑟8 + 𝛼23𝑟10
 (28) 

𝜂 =
√(𝛼13𝑟2 + 𝛼14𝑟4 + 𝛼15𝑟6 + 𝛼16𝑟8)2 + (𝛼17𝑟3 + 𝛼18𝑟5)2

1 + 𝛼19𝑟2 + 𝛼20𝑟4 + 𝛼21𝑟6 + 𝛼22𝑟8 + 𝛼23𝑟10
 (29) 

where μ, τ and η are the functions of αi (i=1 to 23) which are defined based on the following 
dimensionless parameters: 

𝜀1 =
𝑚𝑠

𝑚𝑢

;  𝜀2 =
𝑘𝑠

𝑘𝑠𝑣

; 𝜀3 =
𝑘𝑠

𝑘𝑡

;  𝜀4 = 𝑅𝐹𝐶2

𝑘𝑣1

𝑘𝑣2

𝜔𝑠𝜀2; 𝑟 =
𝜔

𝜔𝑠

;  𝜔𝑠 = √𝑘𝑠/𝑚𝑠 (30) 

where 𝜀1 is the mass ratio, 𝜀2 and 𝜀3 are the stiffness ratios, 𝜀4 is the dissipation factor, and r is the 
dimensionless natural frequency. Furthermore, the following algebraic equation is employed to 
solve the natural and resonant frequencies of the system: 

𝜙(𝑟) = 1 + 𝛼19𝑟2 + 𝛼20𝑟4 + 𝛼21𝑟6 + 𝛼22𝑟8 + 𝛼23𝑟10 = 0 (31) 

For RF = ∞, the natural frequencies of the system yield the spring without reservoir through a 
second-order equation without damper, so the corresponding natural frequencies showed as 
follows: 

𝑟𝑆1 = (
1 + 𝜀3 + 𝜀1𝜀3 − √−4𝜀1𝜀3 + (−1 − 𝜀3 − 𝜀1𝜀3)2

2𝜀1𝜀3

)1/2 (32) 

𝑟𝑆2 =
1 + 𝜀3 + 𝜀1𝜀3 + √−4𝜀1𝜀3 + (−1 − 𝜀3 − 𝜀1𝜀3)2

2𝜀1𝜀3

 (33) 

For RF = 0 an undamped second-order system, whose stiffness is the stiffness of the spring plus the 
reservoir. The natural frequencies of this system are: 

𝑟𝑆𝑉1 = (
𝜀2 + 𝜀3 + 𝜀1𝜀3 − √−4𝜀1𝜀2𝜀3 + (−𝜀2 − 𝜀3 − 𝜀1𝜀3)2

2𝜀1𝜀2𝜀3

)1/2 (34) 
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𝑟𝑆𝑉2 = (
𝜀2 + 𝜀3 + 𝜀1𝜀3 − √−4𝜀1𝜀2𝜀3 + (−𝜀2 − 𝜀3 − 𝜀1𝜀3)2

2𝜀1𝜀2𝜀3

)1/2 (35) 

3. Result and Discussion 
The quarter-car model used in this study focuses solely on vertical dynamics, optimizing ride 

comfort and handling performance in terms of vertical displacement and acceleration. 
Consequently, tests such as Bounce sine sweep and fishhook maneuvers, which evaluate roll, pitch, 
and steering dynamics, are beyond the scope of this model. Future work could extend these 
analyses using half-car or full-car models to capture the effects of heave, pitch, and roll dynamics.  

3.1. Computational Complexity and Efficiency 

The computational complexity of the proposed RMS-based optimization method was 
evaluated to highlight its efficiency compared to state-of-the-art techniques. The method relies on 
MATLAB’s ode45 solver, which implements an adaptive Runge-Kutta algorithm. This approach 
offers a time complexity of approximately O(n⋅m), where n is the number of time steps, and m is 
the computational effort per step. 

In terms of spatial complexity, the solver requires O(n⋅s) storage, where s denotes the number 
of state variables. This ensures a low memory footprint, making the method suitable for real-time 
applications. 

Compared to heuristic optimization techniques such as Genetic Algorithms (GA) or Particle 
Swarm Optimization (PSO), which often involve significantly higher time complexities due to 
iterative population updates, the proposed method demonstrates superior computational 
efficiency. While GA and PSO are effective for complex, multimodal optimization problems, their 
computational costs can be prohibitive for real-time systems. In contrast, the RMS-based method 
achieves comparable results with reduced computational overhead. 

Multiple simulation runs confirmed that the execution time for a typical setup remains under 
2 seconds on modern hardware, reinforcing the practicality of the proposed approach for rapid 
suspension performance evaluation and optimization. 

3.2. RMS Optimization 

The RMS, as an effective suspension optimization technique, the reduction of the SM 
acceleration has been considered as the main optimization goal rather than SM displacement 
because it measures the transmitted force to SM [34] and relative motion of sprung/UMs (wheel 
travel) to achieve the optimum suspension [35], [36]. This technique previously has been used in 
[12] for the optimization of mechanical suspension systems and has been adapted to optimize the 
ASs in this study. The RMS-based optimization method offers several advantages over traditional 
single-objective and heuristic optimization techniques. While methods such as GA and PSO are 
effective for handling complex multi-variable systems, they often require significant computational 
resources and may exhibit slow convergence rates. In contrast, the RMS approach directly targets 
minimizing the Root-Mean-Square (RMS) values of acceleration and displacement, resulting in 
faster convergence with lower computational demands. As a result, the proposed method 
demonstrates superior efficiency in optimizing ride comfort and handling without sacrificing 
solution quality. For this purpose, at first 𝜀1 and 𝜀3 are supposed to be the constants, where 𝜀2 and 
𝜀4 are considered as the design variables. Then we calculated RMS of absolute SM acceleration, U 
as: 

𝑈 = √
1

𝜔2 − 𝜔1

∫ 𝑢2𝑑𝜔
𝜔2

𝜔1

 (36) 

Also, RMS of relative displacement, Φ is as following: 

𝛷 = √
1

𝜔2 − 𝜔1

∫ 𝜂2𝑑𝜔
𝜔2

𝜔1

 (37) 

The optimality condition mathematically is defined as: 
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𝜕𝑈

𝜕𝛷
= 0;  

𝜕2𝑈

𝜕 
= 0 (38) 

In other words, it is expressed as the RMS to the relative RMS (relative displacement). To 
perform the optimization process, the functions U and Φ are numerically calculated over the 
frequency range r = [0, 20] for different values of design parameters, 𝜀4 and 𝜀2. 

The validation of the pneumatic suspension model leverages approaches previously validated 
in MATLAB/SIMULINK for a quarter-car AISD suspension system [20]. These simulations 
incorporated nonlinear air spring dynamics, damping mechanisms, and multi-body interactions. 
The air spring subsystem was validated using polytropic transformations, ensuring an accurate 
representation of stiffness and damping characteristics under varying conditions. Multibody 
Dynamics (MBD) simulations further validated the dynamic response of the system, highlighting 
improvements in ride comfort and handling stability. The MATLAB/SIMULINK code for these 
simulations has been adapted to validate the current study's model.  

The plot depicting the relationship between the absolute acceleration of the SM (U) and the 
relative displacement (Φ) for different design parameters is presented in Figure 3. This plot exhibits 
the function U=U(Φ) with minimum point for constants 𝜀1 and 𝜀3, and variables 𝜀2 and 𝜀4. This 
minimum point signifies the optimal damping value for the system. The optimal condition follows 
the line of minima. Every point laid along the line signifies a specific suspension configuration 
achieves the lowest possible acceleration for a specific relative displacement.  

Figure 4a provides a better perspective 
of the plot of the optimal condition. The 
correlation between 𝜀2 and 𝜀4 is depicted 
in Figure 4b. Decreasing 𝜀2 and 𝜀4 leads to 
heightened SM acceleration, resulting in 
increased vehicle comfort. Figure 5 
demonstrates the impact of 𝜀1 and 𝜀3 on 
the model’s response. Increasing the UM 
(mu) or reducing the value of 𝜀1 enhances 
vehicle comfort. Conversely, increasing tire 
stiffness diminishes vehicle comfort. As 𝜀3 
increases, both the RMS of absolute SM 
acceleration (U) and the RMS of relative 
displacement (Φ) decrease. The reduction 
in U and Φ signifies an improvement in 
vehicle ride quality and handling.  

 
 

Figure 4. 
(a) The function U=U 

(Φ) counter plot;  
(b) The plot in the 

relationship between 
𝜀2 and 𝜀4  

 

Figure 3. 
   Frequency response 

for the linear system 
(n=1.4) 
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Figure 5. 
(a) Contour plot of 

U=U(Φ) with respect to 
𝜀2 and 𝜀4 in varied of 

𝜀3;  
(b) Contour plot of 

U=U(Φ) concerning 𝜀2 
and 𝜀4 in varied of 𝜀1  

 
Figure 5b depicts the result optimization numerically, which involves the characterization of 

the frequency response via optimal parameters. The frequency response is depicted via an applied 
harmonic base excitation. 

The analysis is initiated by examining the behaviour of the system across three distinct 
scenarios, as depicted in Figure 6. In this context, point 1 represents a selected random point in the 
U-Φ plane, while points 2 and 3 are the points of alternative along the minima line. Notably, the 
displacement of the relative of point 1 concerning point 3 is identical. Furthermore, the points 1 
and 2 are equivalent. According to the analyzed optimal prediction, it is anticipated that the 
performance of the suspension system at point 1 will be inferior to that of points 2 and 3.  

Figure 7 depicts the comparison plots 
among accelerations of the system (𝑚𝑠) 
concerning the frequency response of 
acceleration (absolute) "u" and the 
frequency response of displacement 
(relative) "µ". Figure 7a exhibits that the 𝑚𝑠 
for points 1 and 2 are relatively similar at the 
lower frequency ratio (r), while the 𝑚𝑠 for 
point 3 represents a better plot. Figure 7b 
shows the relative displacement of 
transmissibility’s amplitude (η) for point 1 in 
frequency ratio (r). But, it was bad at the first 
resonant frequency ratio. The system 
behavior of comprehensive dynamic 
parameters at these three points can be seen 
in Table 3. 

 

Figure 7. 
(a) SM absolute 

acceleration frequency 
response μ(r); 

(b) SM relative 
displacement 

transmissibility's 
amplitude η(r)  

 

Figure 6. 
    Three distinct 

scenarios of 
determining optimal 

suspensions, via 
alternative points 2 
and 3 with relative 

displacement of point 1 
for an off-optimal 

suspension 
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Table 3.  
Numerical dynamic 

parameters of three 
different suspensions 

based on different points 

 U Φ 𝜺𝟏 𝜺𝟐 𝜺𝟑 𝜺𝟒 
Point 1 6.116 15.54 0.15 5.18 0.2 1.8 
Point 2 6.116 11.97 0.15 7 0.2 1.8 

Point 3 1.463 15.54 0.15 3 0.2 0.75 

 
Figure 8a shows that the SM displacement transmissibility’s amplitude µ for point 3 is much 

better than others. To compare the optimal design from any domain, starting a study on the 
transient base excitation is reasonable. Figure 8b shows the quarter cars' model responses to the 
unit step input. The reaction for points 2 and 3 is better than that for point 1. Damping time in 
points 1 and 2 are almost equal because they have the same RMS of SM acceleration. Point 3 damp 
very fast from 1 and 2 because the RMS of SM acceleration in point 3 is lower than others. 
 

Figure 8. 
(a) SM displacement 

transmissibility's 
amplitude μ(r), for 

three different 
suspensions; 

(b) Three different 
suspensions step 

response  

3.3. Handling Criteria Optimization 

In the preceding section, the suspension was optimized with a focus on decreasing the SM 
acceleration, as opposed to wheel travel. Now, the objective is to optimize the system by 
enhancing the holding force, rather than wheel travel. To achieve this, 𝜀1 and 𝜀3 are initially 
regarded as constants, while 𝜀2 and 𝜀4 are treated as the design variables. Simultaneously, for a 
given mass ratio, an air spring configuration is introduced into the system, and the optimal values 
for reservoir tank volume and orifice resistance are derived. Subsequently, an investigation is 
conducted on the values of 𝜀1 and 𝜀3 through the optimization method. The RMS of the absolute 
holding force, denoted as γ, was computed: 

𝛾 = √
1

𝜔2 − 𝜔1

∫ 𝜏2𝑑𝜔
𝜔2

𝜔1

 (39) 

The plot of the SM absolute holding force (γ) for different design parameters appears in Figure 

9a. It shows that γ = γ(Φ) with a minimum for constants 𝜀1 and 𝜀3 and variables 𝜀2 and 𝜀4. The point 
of minima introduces the optimum damping for the system. By the line of minima, the optimality 
condition is satisfied. Points alighted on the line of minima refer to a specific suspension with as 
low as possible accelerations for a particular value of force holding is minimum. The system's 
behavior analysis of three different conditions displayed in Figure 9b is initiated and illustrates the 
curve in optimum concerning γ - Φ plane, where Point 1 signifies a random point, while Points 2 
and 3 represent the alternative within the minima’s line. The displacement relatives among Points 
1 and Point 3 are identical, while the holding force RMS for the others Points 1 and Point 2 are 
equivalent. In line with our optimal prediction, it is expected that the suspension's behaviour at 
Point 1 will be less favourable compared to Points 2 and 3. The system dynamic parameters for 
these points (Point 1, Point 2, and Point 3) are detailed in Table 4. 

 
Table 4.  

Three suspensions with 
numerical dynamic 

parameters 

 Φ γ 𝜺𝟏 𝜺𝟐 𝜺𝟑 𝜺𝟒 
Point 1 4.90 14.53 0.2 3 0.15 1 
Point 2 8.87 17.15 0.2 2 0.15 0.72 
Point 3 4.90 43.87 0.2 5 0.15 1.73 
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Figure 9. 
(a) Contour plot of γ = γ 
(Φ) for different values 

of design parameter 
(𝜀4);  

(b) Two suspensions of 
optimal alternatives 

(Point 2 and Point 3), 
and Point 1 for a 

suspension under off-
optimal  

 
The effects of 𝜀1 and 𝜀3 on the model’s response are shown in Figure 10. By increasing the 

value of 𝜀3, the RMS of absolute SM acceleration (U) and the RMS of relative displacement (Ф) 
decrease. The reduction in U and Ф indicates an enhancement in the vehicle’s ride and HP. 
Additionally, an increase in 𝜀1 improves handling quality, while an increase in 𝜀3 diminishes 
handling quality. The results of the optimization via verification can be done numerically through 
simulation to examine the system behavior of the frequency response using the optimal 
parameters. Thus, the system is adapted to the applied base excitation harmonically and then 
illustrates the system frequency response. 
 

Figure 10. 
(a) Contour plot of γ = 

γ(Ф) for different 
values of 𝜀3;  

(b) Contour curves of 
the function γ = γ(Ф) 

for constant 𝜀2 and 𝜀4 
for different values of 

𝜀1  
In Figure 11a, it is observed that the amplitudes of the SM relative displacement 

transmissibility for points 2 and 3 are equal, whereas the amplitude of the SM relative 
displacement transmissibility at point 1 is significantly higher than the others. As a result, the ride 
quality of suspension 3 surpasses the others. The figure illustrates the equality of the relative 
displacement transmissibility's amplitude η for points 2 and 3. Point 3 exhibits a considerably 
greater wheel travel displacement while the wheel travel displacement of points 1 and 2 remains 
identical. To enable a comparative analysis of the optimal design in another domain, investigating 
transient base excitation is warranted. Figure 11b illustrates that the holding force at points 1 and 
2 is substantially higher than at point 3. Consequently, the HP of suspensions 2 and 3 outperforms 
the others. Points 1 and 2 exhibit nearly identical damping times due to their equal RMS of SM 
acceleration. In contrast, point 3 experiences significantly faster damping compared to points 1 
and 2, owing to its lower RMS of SM acceleration. 
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Figure 11. 
(a) SM relative 
displacement 

transmissibility's 
amplitude η(r), for 

three different 
suspensions;  

(b) Holding force τ(r), 
for three different 

suspensions  

3.4. Handling Criteria and Ride Optimization 

In the preceding sections, the optimization process concentrated on minimizing the 
acceleration of the sprung mass (SM) concerning wheel travel, whereas the previous section 
emphasized optimizing the holding force relative to wheel travel. Augmenting wheel travel 
diminishes the acceleration of the SM, consequently improving the ride quality of the vehicle. 
However, this augmentation also leads to a reduction in holding force, which impacts the handling 
of the vehicle. Optimal values for 𝜀2 and 𝜀4 are determined using two optimization methods. The 
results demonstrate that increasing 𝜀2 and 𝜀4 enhances handling but diminishes ride quality. Figure 

12a illustrates a specific point, designated as point 1, where both handling and ride quality are 
optimal. According to our optimal prediction, the behaviour of the suspension in terms of handling 
at point 1 is anticipated to be less favorable compared to points 2 and 3, while the behaviour of 
the suspension in terms of ride quality at point 1 is expected to be superior to points 2 and 3. Point 
3 exhibits optimal ride quality, while point 2 demonstrates optimal handling quality. In contrast, 
point 1 showcases optimal qualities for both riding and handling. Consequently, by calculating AS 
design parameters based on 𝜀2 and 𝜀4 at point 1, an optimal combination of ride and handling can 
be achieved. Manipulating 𝜀3 in Figure 12a results in a shift of the optimal point, as depicted in 
Figure 12b. This curve represents the locus of optimal points based on handling and ride quality 
criteria. 

3.5. Simulation 

The performance of each optimization technique can be judged by comparing the 
corresponding frequency responses of the two methods which are achieved through numerical 
simulation. Figure 13 and Figure 14 respectively show the time response of SM relative displacement 
(𝑍𝑠/𝑍), time response of holding force, and time response of SM acceleration. Figure 13a shows 
that point 2 has maximum relative SM displacement and point 2 has minimum relative SM 
displacement. Figure 13b shows that point 2 has maximum holding force and point 3 has holding 
force therefore point 2 handling is better than point 1 and 3.  

Figure 12. 
(a) Holding force τ(r), 

for three different 
suspensions (a1) RMS 

method based on 
handling criteria; (a2) 

RMS method based on 
the ride criteria; 

(b) Contour curves of 
optimal point based on 

the ride and handling 
for different values of 

𝜀3  
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Figure 13. 
(a) Time response 

against a unit step for 
three different Points 

of suspension in SM 
displacement;  

(b) Time response to a 
unit step for three 
different Points of 

suspension in holding 
force  

 
Figure 14 shows that point 3 has 

a minimum SM acceleration than 
points 1 and 2 therefore point 1 ride 
quality is better than points 1 and 2, 
also point 2 ride quality is worse than 
point 1. According to Figure 13b, the 
handling of point 1 is mediocre for 
points 1 and 2. Also, according to 
Figure 14, the ride quality of point 1 is 
mediocre for points 1 and 2 therefore 
handling and ride quality of point 1 is 
mediocre of other point. 

Very likely, a novelty from a 
study is in the method section, even 
though the topic is the same as 
previous studies. New methods that 

are simpler but have the same ability to answer research questions are superior so that they can 
be replicated or applied by subsequent researchers. In addition, if the equipment has accuracy 
tolerance in reading data such as a thermocouple, transducer, airflow meter, etc., it must also be 
stated clearly and honestly in the method section. 

The accuracy and reliability of the results were verified through a multi-step validation 
process. First, the simulation outputs for ride comfort and handling performance metrics were 
cross-referenced with known performance benchmarks for air suspension systems. Furthermore, 
multiple simulation runs were conducted under varied initial conditions to confirm consistency in 
results, thereby enhancing reliability. Comparison with the baseline data of conventional 
suspension systems further validated that the proposed RMS-optimized air suspension significantly 
improves ride comfort (with a 45% reduction in vibration transmission) and handling stability (with 
an 18% increase). This rigorous validation confirms the robustness of the proposed method across 
different driving scenarios." 

4. Conclusion 
In this study, a nonlinear two DOF air suspended quarter car system and its linearized form 

were presented. After that, the analytical approach was utilized to predict the natural frequencies 
and transmissibility functions of the presented linear model. Also, the dimensionless form of the 
linearized model was provided. This form is suitable for the optimization process. The two-root 
mean square (RMS) methods of absolute sprung-mass (SM) acceleration (U) and relative 
displacement (Φ) were applied in the optimization procedure on the ride and the handling system 
in the two DOF models. Then combining the two methods we obtain a point for a specific vehicle 
and a curve for the unspecified vehicle that handling and ride are optimum.  

In order to verify our optimization method on handling and riding, we compared the 
consequent vibrational behaviours of the system at the optimum points based on the ride and 
handling with other optimal points based on handling and ride separately. Results show that using 
the RMS method based on the handling and ride for this suspension has advantages in terms of 
reduced SM acceleration and increased handling together.  The comparison demonstrates 

Figure 14. 
    Time response to a 

unit step for three 
different Points of 
suspension in SM 

acceleration 
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significantly improved performance of the RMS optimized system. This allows experts to explore a 
wide range of design parameters efficiently.  

The findings indicate that the value of the "U" parameter, representing ride quality, 
decreased by 76% from the first to the third point. Conversely, the "Φ" parameter, indicating 
stability, decreased by 22.98% from the first to the second point. This suggests that the third point 
offers the highest level of ride comfort, while the second point exhibits the greatest stability. The 
stability level at the first point equals that of the third point, but it experiences a 76% decrease in 
ride comfort compared to the third point. Similarly, in terms of ride comfort, the first point is on 
par with the second point, but it encounters a 23% decrease in stability compared to the second 
point. 

Future research should further explore the adaptability of the RMS optimization method 
under varied road conditions and diverse vehicle configurations. In particular, extending the 
current model to include adaptive neural control systems could allow for real-time adjustments 
based on dynamic input from sensors, enhancing both ride comfort and handling performance. 
Additionally, investigating multi-objective optimizations that consider energy efficiency alongside 
ride and handling would offer valuable insights, particularly for electric and hybrid vehicles. These 
directions hold promise for advancing air suspension technology in response to the evolving 
demands of the automotive industry. 

Acknowledgments 
The authors especially would like to thank the Engineering Faculty and LPPM of the 

Universitas Pembangunan Nasional “Veteran”, Jakarta, Indonesia, for the internal research grant 
scheme of RIKIN 2024 awarded, Department of Mechanical Engineering, Islamic Azad University, 
Khomeinishahr, Iran, Faculty of Technology, De Montfort University, Leicester, United Kingdom, 
and College of Engineering, for the support given in the collaboration. 

Authors’ Declaration 

Authors’ contributions and responsibilities - The authors made substantial contributions to the 
conception and design of the study. The authors took responsibility for data analysis, 
interpretation, and discussion of results. The authors read and approved the final manuscript.   

Funding – This work was supported by the Hibah Penelitian Internal (RIKIN 2024) Universitas 
Pembangunan Nasional Veteran Jakarta [977/UN61.0/HK.03.01/2024]. 

Availability of data and materials - All data is available from the authors.  

Competing interests - The authors declare no competing interest. 

Additional information – No additional information from the authors. 

References 
[1] P. Karimi Eskandary, A. Khajepour, A. Wong, and M. Ansari, “Analysis and optimization of air 

suspension system with independent height and stiffness tuning,” International Journal of 
Automotive Technology, vol. 17, no. 5, pp. 807–816, Oct. 2016, doi: 10.1007/s12239-016-
0079-9. 

[2] A. Alonso, J. G. Giménez, J. Nieto, and J. Vinolas, “Air suspension characterisation and 
effectiveness of a variable area orifice,” Vehicle System Dynamics, vol. 48, no. sup1, pp. 271–
286, Dec. 2010, doi: 10.1080/00423111003731258. 

[3] P. Servadio and N. P. Belfiore, “Influence of tyres characteristics and travelling speed on ride 
vibrations of a modern medium powered tractor Part II, Evaluation of the Health Risk,” 
Agricultural Engineering International: CIGR Journal, vol. 15, no. 4, pp. 132–138, 2013. 

[4] I. Hostens and H. Ramon, “Descriptive analysis of combine cabin vibrations and their effect 
on the human body,” Journal of Sound and Vibration, vol. 266, no. 3, pp. 453–464, Sep. 2003, 
doi: 10.1016/S0022-460X(03)00578-9. 

[5] K. Toyofuku, “Study on dynamic characteristic analysis of air spring with auxiliary chamber,” 
JSAE Review, vol. 20, no. 3, pp. 349–355, Jul. 1999, doi: 10.1016/S0389-4304(99)00032-6. 

[6] G. Quaglia and M. Sorli, “Air Suspension Dimensionless Analysis and Design Procedure,” 



Armansyah et al.  

 

Mechanical Engineering for Society and Industry, Vol.4 No.2 (2024) 292 

 

Vehicle System Dynamics, vol. 35, no. 6, pp. 443–475, Jun. 2001, doi: 
10.1076/vesd.35.6.443.2040. 

[7] A. J. Nieto, A. L. Morales, A. González, J. M. Chicharro, and P. Pintado, “An analytical model of 
pneumatic suspensions based on an experimental characterization,” Journal of Sound and 
Vibration, vol. 313, no. 1–2, pp. 290–307, Jun. 2008, doi: 10.1016/j.jsv.2007.11.027. 

[8] Armansyah, J. Saedon, L. Zulaihah, A. Sudianto, S. R. Nasution, and G. G. Sinaga, “Design 
Parameters Optimization in CNC Machining Based on Taguchi, ANOVA, and Screening 
Method,” Journal of Mechanical Engineering, vol. 12, pp. 209–224, 2023. 

[9] M. Ghorbany, S. Ebrahimi-Nejad, and M. Mollajafari, “Global-guidance chaotic multi-
objective particle swarm optimization method for pneumatic suspension handling and ride 
quality enhancement on the basis of a thermodynamic model of a full vehicle,” Proceedings 
of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 
237, no. 14, pp. 3334–3352, Dec. 2023, doi: 10.1177/09544070221148287. 

[10] S. Nazemi, M. M. Tehrani, and M. Mollajafari, “GA tuned H<SUB align="right">∞ roll 
acceleration controller based on series active variable geometry suspension on rough roads,” 
International Journal of Vehicle Performance, vol. 8, no. 2/3, p. 166, 2022, doi: 
10.1504/IJVP.2022.122047. 

[11] M. Y. Wu, H. Yin, X. B. Li, J. C. Lv, G. Q. Liang, and Y. T. Wei, “A new dynamic stiffness model 
with hysteresis of air springs based on thermodynamics,” Journal of Sound and Vibration, vol. 
521, p. 116693, Mar. 2022, doi: 10.1016/j.jsv.2021.116693. 

[12] Y. Zheng, W.-B. Shangguan, and S. Rakheja, “Modeling and analysis of time-domain nonlinear 
characteristics of air spring with an auxiliary chamber,” Mechanical Systems and Signal 
Processing, vol. 176, p. 109161, Aug. 2022, doi: 10.1016/j.ymssp.2022.109161. 

[13] G. Nakhaie Jazar, R. Alkhatib, and M. F. Golnaraghi, “Root mean square optimization criterion 
for vibration behaviour of linear quarter car using analytical methods,” Vehicle System 
Dynamics, vol. 44, no. 6, pp. 477–512, Jun. 2006, doi: 10.1080/00423110600621714. 

[14] L. Gui, W. Shi, and W. Liu, “A semi-active suspension design for off-road vehicle base on 
Magneto-rheological technology,” in 2012 9th International Conference on Fuzzy Systems and 
Knowledge Discovery, 2012, pp. 2565–2568, doi: 10.1109/FSKD.2012.6234078. 

[15] M. Özarslan Yatak, Ç. Hisar, and F. Şahin, “Fuzzy Logic Controller for Half Vehicle Active 
Suspension System: An Assessment on  Ride Comfort and Road Holding,” International 
Journal of Automotive Science And Technology, vol. 8, no. 2, pp. 179–187, 2024, doi: 
10.30939/ijastech..1372001. 

[16] S. Nazemi, M. Masih-Tehrani, and M. Mollajafari, “GT Car’s CG height control on a rough road 
by using series active variable geometry suspension,” Journal of Theoritical and Applied 
Vibration and Acoustics, vol. 6, no. 2, pp. 348–363, 2020, doi: 
10.22064/tava.2021.125421.1164. 

[17] A. Mesdaghi and M. Mollajafari, “Improve performance and energy efficiency of plug-in fuel 
cell vehicles using connected cars with V2V communication,” Energy Conversion and 
Management, vol. 306, p. 118296, Apr. 2024, doi: 10.1016/j.enconman.2024.118296. 

[18] M. A. Akbar, W.-O. Wong, and E. Rustighi, “A Hybrid Damper with Tunable Particle Impact 
Damping and Coulomb Friction,” Machines, vol. 11, no. 5, p. 545, May 2023, doi: 
10.3390/machines11050545. 

[19] R. Rizal, A. Keshavarzi, Armansyah, D. Harmanto, and A. Kolahdooz, “Optimization and 
comparative analysis of an AISD suspension system with inerter element for enhanced ride 
and handling,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 
Automobile Engineering, 2024, doi: 10.1177/09544070241249517. 

[20] M. Sorli, W. Franco, and S. Mauro, “Features of a lateral active pneumatic suspension in the 
high-speed train ETR470,” in Proceedings of the 6th UK Mechatronics Forum International 
Conference, 1998, pp. 621–626. 

[21] C. Ferraresi, G. Quaglia, and M. Sorli, “Force control laws for semi-active vehicular 
suspensions,” European Journal of Mechanical and Environmental Engineering, vol. 42, no. 3, 
pp. 145–151, 1997. 

[22] X. Jin, M. Z. Q. Chen, and Z. Huang, “Minimization of the beam response using inerter-based 
passive vibration control configurations,” International Journal of Mechanical Sciences, vol. 



Armansyah et al.  

 

Mechanical Engineering for Society and Industry, Vol.4 No.2 (2024) 293 

 

119, pp. 80–87, Dec. 2016, doi: 10.1016/j.ijmecsci.2016.10.007. 

[23] Y. Hu and M. Z. Q. Chen, “Performance evaluation for inerter-based dynamic vibration 
absorbers,” International Journal of Mechanical Sciences, vol. 99, pp. 297–307, Aug. 2015, 
doi: 10.1016/j.ijmecsci.2015.06.003. 

[24] E. Barredo et al., “Closed-form solutions for the optimal design of inerter-based dynamic 
vibration absorbers,” International Journal of Mechanical Sciences, vol. 144, pp. 41–53, Aug. 
2018, doi: 10.1016/j.ijmecsci.2018.05.025. 

[25] A. Kuznetsov, M. Mammadov, I. Sultan, and E. Hajilarov, “Optimization of improved 
suspension system with inerter device of the quarter-car model in vibration analysis,” Archive 
of Applied Mechanics, vol. 81, no. 10, pp. 1427–1437, Oct. 2011, doi: 10.1007/s00419-010-
0492-x. 

[26] H. Zuo, K. Bi, H. Hao, and R. Ma, “Influences of ground motion parameters and structural 
damping on the optimum design of inerter-based tuned mass dampers,” Engineering 
Structures, vol. 227, p. 111422, Jan. 2021, doi: 10.1016/j.engstruct.2020.111422. 

[27] D. Williams and G. Montenegro, Generalized Vehicle Dynamics. SAE International, 2022. 

[28] D. Pawar, “Numerical Prediction of In-Plane Vertical Dynamics (IPVD) Performance on a 
Quarter Car at the Pre-CAD Preliminary Stages of Product Development,” SAE International 
Journal of Advances and Current Practices in Mobility, vol. 5, no. 2022-28–0396, pp. 1529–
1536, 2022. 

[29] L. Wu and L. Zuo, “A Novel Performance Analysis Method for a Full Vehicle Suspension Based 
on Quarter Car Model,” in International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference, 2017, vol. 58158, p. V003T01A014. 

[30] E. Fermi, Thermodynamics. New York: Dover Publications, 1996. 

[31] B. Wang, B. Su, W. Zheng, Z. Ke, M. Lin, and Q. Wang, “Experimental study on flow rate and 
pressure drop characteristics in T-junction pipes under rolling conditions,” Physics of Fluids, 
vol. 36, no. 4, Apr. 2024, doi: 10.1063/5.0199933. 

[32] M. Avesh and R. Srivastava, “Modeling simulation and control of active suspension system in 
Matlab Simulink environment,” in 2012 Students Conference on Engineering and Systems, 
Mar. 2012, pp. 1–6, doi: 10.1109/SCES.2012.6199124. 

[33] S. Palli, A. Duppala, R. C. Sharma, and L. V. V. Gopala Rao, “Dynamic Simulation of Automotive 
Vehicle Suspension Using MATLAB Simulink,” International Journal of Vehicle Structures and 
Systems, vol. 14, no. 3, Jun. 2022, doi: 10.4273/ijvss.14.3.04. 

[34] J. P. Den Hartog, Mechanical Vibration, 3rd ed. New York and London: McGraw-Hill Company 
Inc., 1947. 

[35] A. C. Mitra, T. Soni, and G. R. Kiranchand, “Optimization of Automotive Suspension System by 
Design of Experiments: A Nonderivative Method,” Advances in Acoustics and Vibration, vol. 
2016, pp. 1–10, Jul. 2016, doi: 10.1155/2016/3259026. 

[36] J. P. C. Gonçalves and J. A. C. Ambrósio, “Optimization of Vehicle Suspension Systems for 
Improved Comfort of Road Vehicles Using Flexible Multibody Dynamics,” Nonlinear Dynamics, 
vol. 34, no. 1/2, pp. 113–131, Oct. 2003, doi: 10.1023/B:NODY.0000014555.46533.82. 

 

 
 

 


	1. Introduction
	2. Method
	2.1. Nonlinear Model
	2.2. Linearized Model
	2.3. Dimensionless Model

	3. Result and Discussion
	3.1. Computational Complexity and Efficiency
	3.2. RMS Optimization
	3.3. Handling Criteria Optimization
	3.4. Handling Criteria and Ride Optimization
	3.5. Simulation

	4. Conclusion
	Acknowledgments
	Authors’ Declaration
	References

