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Highlights: 

• The dataset comprises 1000 lithium-ion 
battery cycles collected under laboratory 
conditions. 

• Accurate State of Health (SOH) prediction 
is essential to prevent performance 
degradation and safety risks. 

• The findings aim to extend battery 
lifespan, enhancing reliability and cost-
effectiveness in various applications. 

 

Abstract 

The increasing demand for reliable lithium-ion battery in various applications is focused on the 
need for accurate State of Health (SOH) predictions to prevent performance degradation and 
potential safety risks. Therefore, this research aimed to improve the accuracy of SOH prediction by 
integrating Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) with Support 
Vector Machine (SVM) to overcome the overfitting problem in traditional machine learning 
models. The dataset used consisted of data from 1000 cycles of lithium-ion battery, collected under 
laboratory conditions. Data from lithium-ion battery cycles were analyzed using optimized PSO-
SVM and ACO-SVM models. These models were evaluated using Mean Square Error (MSE) and 
Root Mean Square Error (RMSE) metrics, showing significant improvements in prediction accuracy 
and model generalization. The results showed that although both optimized models were superior 
to the baseline SVM, PSO-SVM had higher generalization performance during testing. The higher 
performance was due to the effective balance between exploring the search space and exploiting 
optimal solutions, making it more suitable for real-world applications. In comparison, ACO-SVM 
showed superior performance in training data accuracy but was more prone to overfitting, 
suggesting the potential for scenarios prioritizing high training accuracy. These results could be 
applied to extend the lifespan of lithium-ion battery, contributing to enhanced reliability and cost-
effectiveness in applications. 

Keywords: State of Health; Particle Swarm Optimization; Ant Colony Optimization; Support 
Vector Machine; Lithium-ion Battery Performance 

1. Introduction 
Lithium-ion battery is foundational to modern energy storage systems due to the high energy 

density, long service life, and low self-discharge rates. These characteristics make lithium-ion 
battery very important for various applications, from electronic appliances such as cell phones, 
smart and laptops to vehicles, increasing electricity popularity among the public [1], [2]. 
Furthermore, lithium-ion battery is essential in internal components in the storage energy scale, 
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which is large and used for supporting a more efficient and environmentally friendly electrical 
network [3]. With the increasing adoption of technology in various sectors, the need for accurate 
and reliable predictions of battery State of Health (SOH) becomes more crucial. Due to high usage 
time, battery will experience a decline in performance, reducing output power and potentially 
causing accidents [4], [5], [6]. 

SOH prediction is an important aspect of battery management systems. This is because SOH 
is the indicator that mainly reflects the capacity battery remainder compared to the capacity 
initially [7]. Information regarding accurate SOH is essential to maintaining performance in optimal 
conditions, preventing unexpected failures, and optimizing timetable maintenance [8]. With 
precise SOH prediction, users can plan for battery replacements before total failure occurs, thereby 
extending the end-to-end service life and minimizing operational risks in critical applications. 

In recent years, SOH has been predicted using various methods such as real data from vehicle 
usage [9], [10] and others using laboratory data [11]. Each method has used different algorithms, 
including Artificial Neural Network (ANN) [12], Support Vector Machine (SVM) [13], Convolutional 
Neural Networks (CNN), dynamic internal resistance [14], random forest, hybrid neural network 
[15], machine learning [11], deep machine learning [16], extreme machine learning [17], and 
transfer learning [18]. These methods have shown significant capabilities in catching complex 
battery data patterns and providing accurate predictions in specific conditions. For example, CNN 
can extract features important from input data through layers convolution, while ANN has the 
potential to model non-linear relationships between various battery parameters. XGBoost, one 
robust ensemble algorithm, is known for its ability to handle imbalanced datasets and provide good 
predictions in various machine learning competitions. 

One of the main weaknesses of AI-based methods is the need for a large and diverse dataset 
to achieve high accuracy. Despite their strengths, AI-based methods often face limitations, 
primarily requiring large and diverse datasets to achieve reliable accuracy. Models such as CNN 
and ANN depend on extensive data for effective training and risk overfitting when the dataset is 
small or lacks diversity [19], [20]. When trained on a small or insufficient dataset, these models 
often experience difficulty in generalization, which causes predictions to become unreliable after 
being applied to new or different data from training data. This becomes a big challenge in real-
world applications where data is available, possibly limited or not reflecting actual operation 
conditions. 

SVM offers solutions for some of these challenges [21], [22]. The performance of SVM is 
optimal particularly when used with smaller datasets because the algorithm focuses on finding the 
best hyperplane that separates data points into different classes [23]. SVM capabilities handle 
linear and non-linear relationships through kernel functions [21], making it very profitable in 
various application predictions, including lithium-ion battery SOH prediction. Due to the ability to 
work in data-limited conditions, SVM often provides more reliable predictions than traditional AI-
based methods, which require more big data. However, SVM models still require further 
enhancement to address overfitting when applied to high-dimensional data or under aggressive 
model settings, where overfitting may degrade performance on test data or real-world 
applications. 

To address the issue of overfitting, this research integrates metaheuristic optimization 
methods, namely Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), with SVM 
to improve SOH prediction accuracy. The algorithms used are PSO and ACO, both of which have 
strong optimization capabilities. PSO-SVM has been previously used with successful outcomes in 
smart home system management [24], water-lubricated transport optimization [25], and battery 
module cooling [26]. Meanwhile, ACO-SVM has been applied to optimize bug severity classification 
[27] and forecast slope displacement [28]. Both methods are particularly well-suited for optimizing 
SVM parameters, reducing the risk of overfitting, and enhancing model generalization. 

This research contributes to the field of lithium-ion battery SOH prediction by introducing a 
novel method that combines SVM with metaheuristic optimization, specifically PSO and ACO. 
Compared to traditional SVM models, which often struggle with overfitting in high-dimensional 
datasets, the integrated PSO-SVM and ACO-SVM models offer enhanced accuracy and 
generalization. By optimizing SVM hyperparameters, the proposed methods deliver significant 
improvements in SOH prediction performance. The best conditions for each optimization algorithm 
are also determined, providing insights into the practical application of metaheuristic optimization 
in predictive modeling. Therefore, this research aimed to develop a more reliable and adaptable 
model for managing the health of lithium-ion battery, applicable across various real-world 
scenarios where accurate SOH prediction is essential. 
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2. Method 

2.1. Data Collection and Processing 

This research starts by collecting data from cycle lithium-ion battery. The data cover various 
related parameters, including battery SOH, measured during cycle charging and discharging. 
Furthermore, dataset used consists of 1000 cycles of lithium-ion battery performance data, 
sourced from a controlled laboratory experiment, with different 20 sample sets. The use of 1000 
cycles is intentional to capture the full spectrum of battery performance, from optimal initial 
condition to significant degradation. This number of cycles is in line with real-world applications, 
such as electric vehicles and energy storage systems, where battery experiences several cycles 
during their lifespan. Additionally, analyzing 1000 cycles ensures the model can identify 
degradation patterns over time, including early, mid, and late-cycle behaviors, which improves 
prediction accuracy and generalization for long-term performance. The testing was conducted 
using a load simulator on 30 cells of 18650 3.2V 1.8Ah batteries, with the aim of assessing the 
battery's durability and performance over extended cycles. The tests were carried out for 1000 
cycles because, theoretically, lithium-ion batteries like the 18650 typically have an average lifespan 
of 600-700 cycles before experiencing significant degradation or capacity loss. By extending the 
test to 1000 cycles, we ensure a more comprehensive characterization of the battery, which serves 
as a solid foundation for the logic of this research and provides a more accurate understanding of 
the battery's long-term durability. The accuracy and reliability of the experimental cycle data are 
based on standardized testing procedures and consistent observation of battery performance 
throughout the cycling process. Figure 1 shows an overview of the data obtained from the test 
results. 

The dataset is divided into two subsets, namely training and testing. Distribution is performed 
with a proportion of 80% for training and 20% for testing. The objective of this division is to train 
the model on the training set and test model performance on unseen data (test set). This ensures 
that the model can make good generalizations and not only memorize training data. 

Figure 1 Overview of lithium-ion battery cycle data. (a) Voltage vs. capacity during charging, 
showing consistency across cycles, (b) Voltage vs. time during charging for selected cycles, showing 
degradation trends, (c) Voltage vs. time during discharging for selected cycles; (d) Capacity 
degradation across 1000 cycles, demonstrating the steady decline in capacity with usage. The state 
of health (SoH) of the battery was determined based on the remaining capacity relative to the 
nominal capacity, which was calculated using the formula: 

𝑆𝑜𝐻 =
𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑥100% (1) 

where 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the battery's current capacity at a specific cycle, and 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the battery's 
initial (or nominal) capacity. These measurements were taken at regular intervals during both 
charging and discharging processes.  
 

Figure 1. 
Lithium-ion battery 

data extraction results 
testing    



Mufti Reza Aulia Putra et al.  

 

Mechanical Engineering for Society and Industry, Vol.5 No.1 (2025) 74 

 

Support Vector Machine (SVM) is one of the machine learning methods used for classification 
and regression. This method operates by finding the optimal hyperplane that separates two classes 
of room features. Function SVM decisions can be written as follows: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏 (2) 

where 𝑥𝑖 , 𝑥 is vector feature from training data; 𝑦𝑖  is a label or target that corresponds to 𝑥𝑖 , 𝑥; 𝛼𝑖  
is Lagrange coefficients obtained from dual SVM solution; 𝐾(𝑥𝑖 , 𝑥)is a kernel function that 
measures the similarity between two feature vectors 𝑥𝑖 , 𝑥.  

One commonly used kernel is Radial Basis Function (RBF), which maps the input features into 
a higher-dimensional space to capture non-linear relationships. RBF kernel is defined as: 

𝐾(𝑥𝑖 , 𝑥) = exp(−𝛾|𝑥𝑖 − 𝑥|2) (3) 

where b is the bias or intercept of the decision function. 
In this formula, γ controls the influence of a single training example. A larger γ value focuses 

on closely fitting the data points, leading to more complex decision boundaries, while a smaller 
value causes smoother boundaries that generalize better. 

Regularization Parameter (C): The parameter C controls the trade-off between achieving a 
low training error and maintaining a wide margin. When C is large, the model prioritizes minimizing 
errors in the training data, potentially leading to overfitting as it tries to fit all data points perfectly, 
including noise or outliers. However, when C is small, the model allows some margin violations 
(classification errors) to achieve a wider margin, which helps improve generalization. 

The main parameters influencing SVM performance are C and γ. The parameter C controls 
the trade-off between achieving a low training error and maintaining a wide margin. When C is 
large, the model prioritizes minimizing errors in the training data, potentially leading to overfitting 
as it tries to fit all data points perfectly, including noise or outliers. However, when C is small, the 
model allows some margin violations (classification errors) to achieve a wider margin, which helps 
improve generalization. This trade-off is essential to prevent overfitting of Eq SVM optimization, 
which contains parameter C as follows: 

min
𝑤,𝜉

{
1

2
|𝑤|2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

} (4) 

where: 𝑤 is the weight vector of the hyperplane; 𝜉𝑖  is slack variable that measures the margin of 
violation for point data I; C controls how much of a violation against the margin the model allows. 
A big C will try to minimize the violation against margins, which could lead to overfitting. 
Meanwhile, a small C allows a wider margin with several violations. 

The basic SVM model is trained with default parameters without optimization at this stage. 
The results obtained will be used as a yardstick measure to compare the performance of the 
optimized model. 

2.2. Particle Swarm Optimization 

PSO is algorithm optimization based on behaviorally inspired populations of flock birds or fish 
looking for food. It functions in a renewed position and accelerates every particle in-room search 
based on the experience of the best individual and group. PSO optimizes parameters C and γ for 

SVM models, influencing model performance. The formula used in PSO to update speed 𝑣𝑖
𝑘+1and 

the positions 𝑥𝑖
𝑘+1of the particles are as follows [29]: 

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘) (5) 

where: 𝑣𝑖
𝑘  is speed particles on iteration to -k; 𝑥𝑖

𝑘is the position of the particle at the kth iteration; 

𝑝𝑖
𝑏𝑒𝑠𝑡  is position best individual particles; 𝑔𝑏𝑒𝑠𝑡 is is the best global position in the herd; 𝑤 is the 

inertia factor that controls influence speed previously; 𝑐1, 𝑐2 is coefficient learning, and 𝑟1, 2 is 
number random between 0 and 1. 

This research implements PSO to optimize the parameters C and γ from SVM to minimize 
Mean Square Error (MSE) on the test set. Evaluation of PSO-SVM performance includes comparison 
results with a basic SVM model, comprising measurement accuracy prediction and efficiency time 
training. 

The hyperparameter search space for this research was defined as follows: 
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• The regularization parameter C was searched in the range [10-3, 103] on a logarithmic scale. 
• The kernel parameter γ was searched in the range [10-3 , 101] on a logarithmic scale. 

 
The stopping criteria for PSO algorithm included the following: 

• A maximum number of 50 iterations was set to balance computational efficiency and accuracy. 
• A convergence threshold of 105 for the change in the global best solution across iterations was 

used to terminate the optimization early if no significant improvements were observed. 

2.3. Colony Optimization Support Vector Machine (ACO-SVM) 

ACO is algorithm behavior-inspired optimization that searches for the shortest way to source 
food. Ant puts pheromones on the path taken, which guides more to discover the optimal path. In 
SVM context, ACO is used to optimize the parameters C and γ, similarly to PSO. ACO process 
includes iteration where intensity pheromones are updated with the following formula [30]: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∑ Δ𝜏𝑖𝑗
𝑘

ants

 (6) 

where: 𝜏𝑖𝑗(𝑡) is the pheromone intensity at the edge between nodes i and j at iteration t; 𝜌 is the 

pheromone evaporation rate; Δ𝜏𝑖𝑗
𝑘  is the amount of pheromones left by ants k. 

This research used ACO to explore parameter space, determining which combination of C and 
γ is optimal for SVM. After determining the optimal parameters, SVM model is trained and 
evaluated in the same way as in PSO-SVM, using MSE and RMSE as metric performance. Evaluation 
of ACO-SVM results includes a comparison against the basic SVM and PSO-SVM models, focusing 
on accuracy prediction and efficiency. The optimal parameters are used to train SVM model and 
the results are evaluated using MSE and Root Mean Square Error (RMSE). The formula for MSE and 
RMSE is: 

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (7) 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (8) 

where: 𝑦𝑖  is mark actual; 𝑦𝑖  is mark predictions; 𝑛is the number of samples. 
MSE and RMSE were selected as evaluation metrics due to their widespread application for 

assessing regression models. These metrics are particularly relevant for SOH prediction because of 
their sensitivity to large errors, interpretability, and relation with optimization objectives. MSE 
penalizes larger errors more significantly, which is essential for SOH prediction where significant 
deviations in predictions can lead to incorrect maintenance schedules or costly premature battery 
replacements. RMSE provides results in the same unit as the target variable, making it easier for 
engineers and stakeholders to interpret model performance. These metrics also effectively capture 
cumulative prediction errors across degradation trends over many cycles, ensuring the model's 
reliability in forecasting battery health. Additionally, both MSE and RMSE are in line with the 
optimization objectives of PSO and ACO, allowing the models to be tuned for better generalization 
and predictive accuracy. 

3. Result and Discussion 
Comparison between the three models, namely PSO-SVM, ACO-SVM, and basic SVM, shows 

important insights about their effectiveness in predicting SOH during the training and testing stage, 
as shown in Figure 2 and Figure 3. All models show a strong ability to follow the actual SOH curve, 
although ACO-SVM and PSO-SVM have a higher sensitivity to data variations, enabling the ability 
to capture more complex patterns in the training data. This makes ACO-SVM particularly effective 
in modeling non-linear and varied data structures. In comparison, basic SVM shows more linear 
predictions, which simplifies the connection between input features and SOH, leading to 
underpredictions in non-linear regions. 
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Figure 2. 
Training results: 

(a) Actual vs predicted; 
(b) error predicted    

 
The absolute error graph (Figure 2b) shows that ACO-SVM achieves better performance by 

thoroughly exploring the parameter space and avoiding local optima. However, its higher 
sensitivity can lead to overfitting. In comparison, PSO-SVM balances exploration and exploitation 
effectively, causing slightly lower training accuracy with better generalization [31]. Basic SVM, 
lacking meta-heuristic optimization, struggles to adapt to complex variations in the data, as shown 
by significant error spikes, particularly around cycle 100. ACO-SVM excels in capturing intricate 
data patterns during training, showing its advantage in highly non-linear contexts [32]. 

 

Figure 3. 
Testing result:  

(a) Actual vs. predicted 
SOH; 

(b) Predicted SOH error    
 
Overfitting in ACO-SVM is primarily caused by the optimization process focusing 

predominantly on achieving low training errors. This leads to an overly complex model that is finely 
tuned to the training data such as any noise or outliers, causing poor generalization of unseen data. 
To mitigate overfitting, cross-validation can be used to evaluate model performance across 
multiple data splits, ensuring that the model is not overfitting to a specific subset of the training 
data. Additionally, regularization methods such as adjusting the parameter C in SVM, are capable 
of penalizing overly complex models and reducing their sensitivity to noise. Balancing exploration 
and exploitation in ACO algorithm, such as by adjusting pheromone decay rates or limiting the 
influence of early solutions, can prevent premature convergence to suboptimal parameters and 
promote better generalization. These strategies collectively enhance the robustness of ACO-SVM 
and ensure improved performance on unseen data. 

 

Figure 4. 
Prediction accuracy: 

(a) RMSE; 
(b) MAE    

 
As presented in Figure 4, ACO-SVM shows more performance compared to PSO-SVM of 2.06% 

during training. ACO-SVM shows less performance compared to PSO SVM of 2.04% during testing. 
This is because PSO-SVM performs better during testing due to its effective global search for 
hyperparameters, which avoids overfitting and achieves a good balance between model 
complexity and generalization [33]. Therefore, PSO-SVM generalizes better to unseen data, as 
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shown by lower RMSE in the testing compared to ACO-SVM. Both PSO-SVM and ACO-SVM have 
approximately the same level of accuracy. A comparison with previous research is shown in Table 

1. 
Table 1 compares the proposed PSO-SVM and ACO-SVM models with baseline methods such 

as GBDT (gradient boosting decision tree), LSTM (long short-term memory), and ICNN (incremental 
convolutional neural network). The methods are selected due to their widespread use in predictive 
modeling and relevance to SOH prediction. GBDT is robust against overfitting and effective for 
structured data, while LSTM excels in capturing temporal dependencies, and ICNN leverages 
feature extraction for non-linear datasets. However, GBDT struggles with high-dimensional data 

and lacks temporal modeling. LSTM requires 
large datasets and is computationally 
expensive, while ICNN risks overfitting on 
small datasets. In comparison, the proposed 
PSO-SVM and ACO-SVM address these 
challenges through hyperparameter 
optimization. PSO-SVM offers superior 
generalization in noisy or limited data 
scenarios and ACO-SVM shows potential to 
capture complex patterns in highly non-
linear datasets. These strengths make the 
proposed models more adaptable and 
reliable for diverse SOH prediction scenarios. 

4. Conclusion 
In conclusion, this research showed that both PSO and ACO significantly enhanced the 

performance of SVM in predicting SOH of lithium-ion battery. PSO-SVM provided superior 
generalization during testing due to balanced exploration and exploitation, making it suitable for 
deployment in scenarios with limited or noisy data. Meanwhile, ACO-SVM excelled in capturing 
complex patterns in training data, serving as an ideal option for high-accuracy requirements in 
controlled environments. These models were found to be particularly applicable in electric 
vehicles, renewable energy storage systems, and battery health monitoring platforms, where 
accurate SOH prediction was essential for extending lifespan and optimizing maintenance 
schedules. 

Practical implementation of these methods faced challenges, including the computational 
cost associated with metaheuristic optimization such as PSO and ACO, which limited real-time 
applications. Additionally, their performance significantly depended on the availability of high-
quality and diverse datasets, which did not show real-world conditions. To address the challenges, 
future research should focus on optimizing computational efficiency, exploring transfer learning 
approaches to handle limited datasets, and testing the models in real-world deployment scenarios 
to validate their robustness under operational constraints. 
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