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This article 
contributes to: 

 

 

Highlights: 

• ANNs accurately in modeling, optimizing, 
and predicting the performances of 
alternative fuels 

• ANNs enhance fuel efficiency and reduce 
emissions by optimizing combustion 
parameters. 

• ANNs effectively support sustainable 
energy development and the shift to a 
green economy. 

 

Abstract 

Artificial Neural Networks (ANN) are increasingly employed in alternative fuels to enhance 
efficiency and mitigate environmental impacts. This article comprehensively reviews the 
application of ANNs in modeling, optimizing, and predicting the properties of various alternative 
fuels. ANNs excel at capturing the complex non-linear relationships inherent in these fuels' 
physicochemical properties and combustion processes, which can be challenging to forecast using 
traditional mathematical models. By leveraging ANNs, combustion parameters can be optimized, 
thereby improving fuel efficiency, reducing exhaust emissions, and enhancing overall engine 
performance. Additionally, this research explores the effective use of ANNs in forecasting engine 
performance and emissions for alternative fuels, while also addressing key challenges, including 
the need for high-quality data and the optimization of algorithms for better accuracy. Additionally, 
the article considers the future potential of ANNs in supporting sustainable energy development 
and facilitating the transition to a green fuel economy. With advancements in computing 
technology, ANNs are anticipated to remain a vital instrument in the progression of alternative fuel 
research and its associated applications. 

Keywords: Artificial neural networks; Accurate prediction; Alternative fuels; Engine performance; 
Exhaust emission 

1. Introduction 
The global energy crisis [1], [2], coupled with escalating concerns regarding climate change 

[3], [4], has necessitated a concerted effort among researchers and engineers to explore 
alternative fuels that are both environmentally friendly and sustainable [5]–[8]. Prominent 
alternative fuels such as ethanol, methanol, butanol, CNG, LPG, hydrogen, and biodiesel present 
promising solutions to mitigate addiction to fossil fuels (see Figure 1) and also decrease greenhouse 
gas emissions [9]–[14]. Nevertheless, a significant challenge in developing and deploying these 
alternative fuels lies in the intricacies of their physicochemical properties [15], [16] and combustion  
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dynamics [18], [19], necessitating 
innovative methodologies for 
thorough understanding and 
optimization [20], [21].  

Artificial Neural Networks  
(ANN) a subset of artificial 
intelligence (AI), has surfaced as 
highly effective tools for addressing 
complex non-linear [22]–[25]. ANNs 
possess the capability to capture 
intricate relationships that 
traditional mathematical models 
often struggle to predict, 
particularly in the realm of 
alternative fuels [26]–[30]. The 
integration of ANNs facilitates 

enhanced modeling of fuel properties, optimization of combustion parameters, and accurate 
forecasting of engine drive system efficiency and exhaust profile [31], [32]. Within this paradigm, 
ANNs proffer considerable advantages, including the ability to process variable or limited datasets 
while concurrently enhancing fuel efficiency [33], [34] and minimizing environmental impacts [35]–
[37]. 

Numerous studies have demonstrated the successful application of ANNs to predict 
alternative fuels' behavior in combustion engines, focusing on aspects such as energy efficiency 
and exhaust emissions [38]–[41]. The use of ANNs effectively optimizes critical combustion 
parameters, including fuel-air ratios, injection pressure, and combustion duration [42], which are 
pivotal in enhancing engine performance and curbing harmful emissions. This optimization 
becomes increasingly essential given the distinct characteristics of alternative fuels compared to 
conventional fossil fuels, often necessitating specific adjustments to the combustion system to 
realize optimal performance [43]. 

However, deploying ANNs in the context of alternative fuels is not devoid of challenges. One 
of the primary hurdles involves the necessity for high-quality data to train the neural network [44], 
ensuring accurate predictions [45], [46]. Additionally, optimizing ANN algorithms is crucial to 
minimize errors [47] and enhance prediction accuracy [48], mainly when working with highly 
variable data [49], [50]. Ongoing efforts are focused on overcoming these challenges, particularly 
through utilizing advancements in computing technology and sophisticated algorithm optimization 
techniques. As these technologies continue to evolve, it is anticipated that ANNs will remain pivotal 
in the research and development of alternative fuels. Their capacity to manage complex data and 
deliver precise predictions positions ANNs as an invaluable resource in transitioning towards a 
green fuel economy and sustainable energy solutions. This paper intends to present a 
comprehensive review of ANNs' applications in various types of alternative fuels, highlighting 
achievements while addressing future challenges and opportunities. 

2. Material and Methods 

2.1. Research Approach 

This study is a comprehensive literature review on applying Machine Learning (ML) methods 
in bio-oil research, with a special focus on using ANN. This study will identify, classify, and analyze 
ML applications in various stages of bio-oil production, including the transesterification process 
and physicochemical properties analysis. The materials and methods section provides details on 
the data sources, search strategies used to find relevant articles, criteria for selecting studies 
included in the review, the total number of studies incorporated, as well as the statistical 
approaches or methods used for analysis. 

2.2. Data Collection 

A comprehensive critical review of relevant literature was performed using reputable journals 
accessed through a single academic database, ScienceDirect (https://www.sciencedirect.com/). 
The focus was primarily on Elsevier journals indexed in Scopus and WoS, ensuring a comprehensive 
and high-quality analysis of the existing research. The selected articles include recent studies on 

Figure 1. 
Projection of worldwide 

demand for refined fuels 
products from 2017 to 

2040 [6], [17]  
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ML applications, especially ANN, in bio-oil and renewable fuel research. The literature will be 
selected based on keywords such as "bio-oil", "machine learning", "artificial neural networks", 
"transesterification", "real-time monitoring", "physicochemical properties" “engine 
performances”, and “exhaust emission”. Studies focusing on modeling, controlling, and optimizing 
bio-oil processes will be prioritized. Furthermore, the following criteria were established to refine 
the discussion and ensure a focused review. Only selected articles were included, and those 
deemed outside the scope were excluded based on the following conditions: 

a. Articles published in discontinued journals or those found to lack a rigorous peer-review process;  
b. Articles not referenced in the original research paper and inaccessible;  
c. Articles that do not examine the role of artificial neural networks (ANN) in relation to engine 

performance and emissions using alternative fuels; and 
d. Articles that mention ANN in the abstract and body text but do not provide substantial evidence of its 

significance in the methods and results.  

This systematic approach ensures the discussion remains focused and anchored in credible 
research findings. Table 1 presents a detailed overview of the limitations of selecting articles from 
the ScienceDirect database, highlighting specific challenges and criteria that prior studies have 
identified [51]. These limitations may include issues such as accessibility, publication bias, and the 
specificity of search parameters. 

 
Table 1. 

Limitations of article 
selection 

No Article selection Limitations 

1. Database ScienceDirect 

2. Search within Article title, abstract, keyword 

3. Search document ANN, alternative fuels, engine performance, exhaust emission 

4. Type of access All (All Open Access, Gold, Hybrid Gold, Bronze, Green) 

5. Year 2012-2025 

6. Subject area Alternative fuels, Bio-oil, machine learning, "artificial neural 
networks, and transesterification, real-time monitoring, 
physicochemical properties, engine performances, and exhaust 
emission.  

7. Document type Article 

8. Publication stage Final 

9. Source title All (not specified) 

10. Keywords All (not specified) 

11. Affiliation All (not specified) 

12. Funding sponsor All (not specified) 

13. Country All (not specified) 

14. Source type Research article (Journal) 

15. Language English 

 
 Meanwhile, Figure 2 

provides a comprehensive 
illustration of the 
methodology employed for 
literature selection and the 
data analysis process, 
outlining each step to ensure 
thorough evaluation and 
synthesis of the relevant 
literature. This visual 
representation facilitates a 
clearer understanding of 
how the research was 
conducted and the rationale 
behind the chosen methods. 
Furthermore, Figure 3 shows 
a classification of ANN 

models showing that multi-layer perceptron, extreme learning machine, and self-organizing map 
methods have been used in alternative fuel research. Furthermore, the classification of artificial 

Figure 2. 
Literature selection and 

data analysis process  
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neural network (ANN) models shows that multi-layer perceptron, extreme learning machine, and 
self-organizing map methods have been used in alternative fuel research, as presented in Figure 2. 

 

3. Results and Discussion 

3.1. Alcohol Group (Ethanol, Butanol, and Methanol) 

3.1.1. Ethanol 
Several studies carried out an in-depth study aimed at forecasting the act metrics of a mono 

and four-chamber gasoline engine under different ignition timing conditions [23], [33], [52], [53]. 
The research used a fuel blend of gasoline and ethanol, with a specific emphasis on a 50% ethanol 
mix. To accomplish this, they utilized an ANN, a computational method recognized for its ability to 
learn and replicate intricate patterns in data. To develop the ANN model effectively, the 
researchers collected experimental data under controlled conditions that simulated dynamic 
engine speeds and entire load operations. This dataset was the foundation for training and testing 
the ANN, ensuring the model accurately reflects real-world engine performance. The ANN 
architecture utilized a double-segment perceptron chain, particularly suited since capturing along 
relationships through inputs-outputs. The model was trained using a standard back-propagation 
(BP) algorithm tailored for applications in spark ignition engines. Additionally, an optimizer from 
the quasi-Newton family, specifically the limited-memory broyden fletcher goldfarb shanno 
algorithm, was employed alongside the rectified linear unit activation function [54], [55]. This 
combination was crucial for evaluating the percentage error between the predicted results and 
experimental values. The researchers included critical parameters such as engine speed (measured 
in RPM), the type and ratio of fuel used, and ignition timing (angles) as inputs to the ANN. The 
model's outputs encompassed several key performance indicators, including torque; power, sfc, 

Figure 3. 
ANN model 

classifications 
highlighting the use of 

multi-layer perceptron, 
extreme learning 

machine, and self-
organizing map methods 

in alternative fuel 
research  
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ηth, also overall energy consumption. The study's findings underscored the effectiveness of the 
ANN method for predicting the SIE engine work has fueled by the BE50 blend. The results 
highlighted the minimal prediction errors, which were found to be approximately 0.003 for the 
training dataset and 0.002 for the testing dataset, reflecting high accuracy in the model's 
performance. Additionally, a robust correlation was observed between the predicted and 
experimental data, indicating that the ANN was able to replicate observed engine behavior closely. 
Overall, the ANN analysis revealed a favorable correspondence between the predicted data 
generated by the model and the actual measured values obtained during experimentation. This 
research demonstrates the potential of ANN in engine performance prediction and emphasizes its 
capability to reduce the necessity for extensive experimental validation significantly. 
Consequently, the developed model is an efficient and powerful tool for forecasting engine 
performance metrics and emission characteristics across various operational scenarios, especially 
when dealing with diverse biodiesel blends. 

3.1.2. Butanol 
Numerous studies have thoroughly examined the impacts of cyclic variability on the engine 

works and tailpipe pollutants, specifically when using both pure diesel and diesel-butanol fuel 
blends [56], [57]. They conducted their study on the concentration of n-butanol in the fuel blends 
was adjusted from 3% to 15% in steps of 3%. The researchers developed a neural network model 
with one hidden layer consisting of 11 neurons. The regression values for the model are 0.9788, 
and 0.879 for the practice, validation, and test modes. Additionally, the error for the training, 
validation, and test datasets ranged between 3.9592 and 8.7095. The results show a strong 
alignment with experimental data, reflecting a high level of accuracy. One of the pioneering studies 
on the effectiveness of ANN models for forecasting engine work and emitted pollutants in alcohol-
gasoline engines [57], [58]. The study focused on evaluating key performance indicators such as 
brake power, torque, bsfc, ηth, and exhaust gas. The insertion parameters for the back-
propagation pattern included crankshaft pace (rpm) around 1,000 to 5,000 rpm. The model's 
objective was to predict exhaust emissions and overall engine performance accurately. The study 
determined the top hidden layer model by adjusting the some of neurons, experimenting with 
different activation functions, and testing various training algorithms. However, the study did not 
clarify whether the input-output data were normalized, leading to the presumption that such 
normalization was not implemented. The activation functions evaluated included tansig and logsig, 
while the training algorithms examined encompassed trainlm, traingdx, trainscg, and trainrp. To 
assess the effect on the correlation coefficient (R), the value of neurons in the deep layer was 
varied between 19 and 23. In this study, 80% of the total real dataset, comprising 410 data points, 
was utilized for practice, while the remaining 20% was reserved for trial. Additionally, both the root 
mean square error (RMSE) and mean relative error (MRE) were computed to assess the work of 
the prediction pattern. The findings showed that the ANN model with 20 hidden neurons, using a 
sigmoid with the trainlm algorithm, provided the most precise predictions with R-value is 0.9989. 
The correlation coefficients for power, torque, ηth, volumetric efficiency, BSFC, and emissions 
were 0.999, 0.995, 0.981, 0.985, 0.986, 0.994, 0.987, also 0.984. The mean relative error (MRE) of 
the predictions ranged between 0.46% and 5.57%, with low RMSE values, further highlighting the 
model's accuracy. 

Meanwhile, previous researcher [59] used bp-ANN to estimate key work indicators for a 
methanol-fueled 4 chamber of SIE. The model's input utilized spin force, crankshaft RPM, 
combustion feed rate, nlet chamber thermal state, and engine coolant intake heat level as input 
factors. It predicted SFC, effective work and pressure, along with combustion outlet temperature 
(COT). The rpm was set around 1200 to 4400 rpm in 300 rpm increments, while torque ranged 
between 5 and 70 N·m. A conservative approach was taken by predicting each output parameter 
separately, resulting in the development of four distinct ANN models. The study leveraged the 
logistic sigmoid (logsig) activation function and tested both single and dual hidden layer structures. 
The training algorithms assessed included trainlm (Levenberg-Marquardt) and trainscg (Scaled 
Conjugate Gradient), while some neurons in the unknown sheet varied from 4 to 16. A 75:25 data 
division was implemented, with 44 data training and 11 tested. Additionally, it is worth noting that 
the authors applied a data normalization range of 0.1 to 0.9 for the input-output variables, which 
differs from the typical normalization range of 0–1 or −1 to 1. While the choice of this normalization 
range was likely made to prevent saturation of the sigmoid function, though it was not explicitly 
explained., a condition that could hinder or completely stop its learning process, as discussed by 
Tarigonda [60] and Thangaraja [61]. The operational efficiency of the ANN pattern was assessed 
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through RMSE, coefficient of determination (R²), and mean absolute percentage error (MEP). The 
study identified the most effective topology and learning algorithms for predicting bsfc, power 
output (Pe), power output (APe), and exhaust temperature (Tex) as 5-5-5-4, 5-6-4, 5-7-4, and 5-7-
4, respectively, with trainlm being utilized for all except APe, which employed trainscg. The R² 
values for testing and training all powertrain metrics are around 0.999. This approach offers a 
viable alternative to traditional predictive modeling techniques. 

3.1.3. Methanol 
In another investigation, Bathala et al. [55] and Sujin et al. [62] created ANN models to predict 

BSFC, carbon monoxide, hydrocarbon, and air-fuel ratio (AFR) for a SIE running on both petro-fuel 
and methyl-alcohol fuels. The researchers adjusted revolution rate (rpm) and torque, similar to the 
earlier work [63]. The independent variables included rpm, torque, and fuel, while the outputs 
were the specific engine performance and emission parameters. Notably, each output was treated 
separately, leading to the creation of four distinct models for each output by varying the number 
of neurons from 5 to 15 to determine the optimal neuron count that minimized the mean square 
error. The prediction performance was assessed using RMSE, MEP, and R². The results showed that 
the most precise predictions with the train algorithms, employing web configurations, and the R² 
values for practice and trial in predicting engine work were 0.9675, 0.9823, 0.9901, 0.9945, 0.9438, 
0.9789, 0.9854, and 0.991. 

Furthermore, Taheri-Garavand and Cheng [40], [64] carried out a study using a bp- ANN 
model to forecast the SIE works and pollutant with ethanol-gasoline. The model's input variables 
included different fuel combinations, with ethanol content ranging from 0% to 20% in 5% 
increments, along with engine speeds and loads set at 25%, 50%, 75%, and 100%. The output 
parameters of engine’s works kincluded several training algorithms, including trainlm, traingdx, 
trainrp, and trainscg, were investigated to optimize the model's elevation coefficient (R) and mean 
squared error (MSE). The datas of neurons in each layer was adjusted between 15 and 35 to 
determine the most effective configuration. The input data were normalized to a area of -1 to 1 to 
warrant fair contribution from any fickle. Ninety percent of the 50 trials were used for practice, 
while the persisting samples were held back for testing. The study identified the optimal 
architecture as a two-hidden layer setup of 5-25-25-7, which achieved the highest correlation 
coefficient of 0.99998. The correlation coefficients for engine works obtained from the ANN model 
were 0.99, 0.96, 0.98, 0.96, 0.90, and 0.71, respectively.  

3.1.4. Gasoline-methanol and ethanol 
In a related study, Udaybhanu [57] and AlNazr [65] investigated the work of a SIE with 

gasoline-methanol and ethanol engine fueled with the alcohol content reaching up to 15%, 
alongside unleaded gasoline. An ANN was employed to assess its predictive capabilities concerning 
powertrain metrics, including rotational force, mechanical output, and sfc. The model developed 
in the study aimed to identify the ideal methanol-to-ethanol ratio for maximizing engine torque 
and power while minimizing specific fuel consumption (SFC). Engine speeds were tested from 1300 
rpm to 3000 rpm, and the ethanol and methanol blend ratios were set at 5%, 10%, and 15% by 
volume. For example, a blend of 5% methanol and 10% ethanol was denoted as M05E10. The 
model's input variables included engine RPM and fuel mixture ratio, with the goal focusing on 
engine performance metrics. Three ANN models were created using these outputs, and the input 
data were normalized to a range of 0 to 1. Following the 85:15 training and testing data split for 
model evaluation. Performance was assessed using metrics like R, R², RMSE, and direction accuracy 
(DA) value near to one suggest strong alignment between predictions and actual system behavior. 
The optimal network architectures for predicting torque, brake power, and BSFC were found to be 
3-10-1, 3-10-1, and 3-18-1, respectively, using the tansig transmission part. The recorded R and DA 
values for these metrics were 0.9906 and 0.889 for torque, 0.9970 and 1.0 for brake power, and 
0.9312 and 0.889 for BSFC. The study focused on predicting performance metrics for two types of 
HCCI engines: SI and CI-converted engines, both running on ethanol and butanol. The analysis was 
performed using conventional multilayer perceptron (MLP) ANN models and long short-term 
memory neural network models. 

Moreover, a nearly identical study by Bichitra [66] about the butanol with powered engine 
variable compression ratio (VCR) engine using copper oxide (CuO) with a single-cylinder retrofitted 
with a variable valve timing (VVT) engine cylinder head, produced several output parameters, 
including Pmax, and gas emissions, as well as indicated thermal efficiency. For the butanol engine, 
the dataset was split at 70:30 for training and testing, but normalization details were not specified. 
Both ANN models were evaluated, and the feedforward model was also tested on the CIE using a 
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logsig activation function. The rationale for not assessing the RBF ANN in this particular instance 
remains unclear. The ANN predictive capability was assessed using R², RMSE, and mean percentage 
error. In terms of accuracy, the R² value for the FF ANN model during testing was higher than that 
of the RBF ANN, while the RBF ANN outperformed the FF ANN during training. For the CIE, the R² 
varied from 0.89 to 0.94 for the output parameters. The study definite that the models could 
estimate HCCI motor work metrics with an inaccuracy margin below 5%. 

3.2. Biodiesel Group 

Biodiesel production is categorized based on feedstock, transesterification technique, mode 
of operation, reactor, and process intensification (See Figure 4). Feedstocks come in four 
generations, ranging from edible vegetable oils to genetically engineered microalgae. Newer 
generations, such as waste oils and microalgae, are more sustainable and environmentally friendly. 
Transesterification techniques include using homogeneous catalysts (soluble acids or bases), 
heterogeneous catalysts (solid and separable), and non-catalytic methods that utilize supercritical 
alcohol without a catalyst. Each technique has advantages and challenges, especially related to 
efficiency and cost. Production is carried out in batch or continuous modes. Batch mode is suitable 
for small-scale production, while continuous mode is more efficient for large-scale production with 
reactors such as plug flow and continuous stirred tanks. Intensification processes use technologies 
such as microwaves, ultrasound, and membranes to speed up reactions and save energy, making 
biodiesel production faster and more efficient. 

 

3.2.1. Crude glycerol and diesel 
In a late observation, various studies thoroughly evaluated the predictive capabilities of ANN 

through various engine performance indicators and pollutant gas traits [70]–[72]. The research 
centered on analyzing BTE, EGT, BSEC, and emissions such as HC, CO2, CO, NO, O2, and soot. The 
study utilized blends of crude glycerol and diesel oil in a DIE-CIE. The fuel blends content in the fuel 
was adjusted between 10% and 25%, increasing by 5% increments. Engine load was progressively 
increased from idle to maximum capacity in 25% steps. The study also examined the impact of two 
fuel injection timings (FIT) and two fuel injection pressures (FIP) — 250 bar and 280 bar — with 
timing settings of 20° and 24° bTDC. Two distinct ANN models were developed: one to predict 
emissions and the other to assess motor work. The emissions model included an unknown sheet 
with 18 neurons, while the performance model had two unknown sheets, each consisting of 12 
neurons. The network architecture was optimized by adjusting the neurons between 5 and 25, 
choosing the best configuration based on the minimization of mean squared error, which was used 

Figure 4. 
Classification of 

strategies for 
biodiesel production 

[17], [67]–[69]  
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as the objective function. In addition, the models' predictive capabilities were thoroughly 
evaluated using a range of conventional and advanced accuracy and deviation metrics, such as 
RMSE, coefficient of determination, and uncertainty index. The findings revealed a high level of 
predictive accuracy, highlighting the models' effectiveness in predicting emission characteristics 
and engine performance. These results affirmed the reliability of ANNs to this context. 

3.2.2. Waste vegetable cooking oil 
On the other side, El-Adawy et al. [73] conducted a study to forecast the drive system 

efficiency and exhaust profile by a blend of waste vegetable cooking biodiesel and pure diesel. The 
research involved a CIE operating at various speeds, utilizing a back-propagation artificial neural 
network (ANN). Key performance metrics, such as torque and brake-specific fuel consumption 
(BSFC), were examined, along with emissions of hydrocarbons and carbon monoxide. The ANN 
model incorporated input variables including engine speeds ranging from 1200 to 3600 rpm and 
biodiesel blend ratios varying from 0% to 50% in 10% increments. A specific unknown sheet 
standard was employed, with different activation functions (logsig and tansig) and training 
algorithms like trainlm, traingdx, trainrp, and trainscg being tested. The sum of neurons in the 
unknown sheet was adjusted between 22 and 28. The model's inputs and outputs were normalized 
to a range of -1 to 1, with the objective function being the mean squared error (MSE), set at 
0.00001, to estimate both practice and trial work. The dataset was divided, with 80% used for 
training and the remaining 20% for testing and validation. The sensitivity analysis showed that the 
most effective ANN model utilized 20 neurons, and this configuration resulted in an R of 0.996. 

In addition, to gain insights into the impact of artificial neural networks (ANN) in the work of 
compression ignition engines fueled by WCO, then previous studies [74], [75] examined the 
impacts of fuel spray timing on different emissions and powertrain metrics. Their study utilized a 
stationary CI engine fueled by a blend of WCO and diesel. The study employed ANN to predict 
critical parameters of engine performance, exhaust gases, smoke. Three different network models 
were assessed, each focusing on either individual prediction of emissions and engine performance 
or a combined approach. The tested WCO-to-diesel blend ratios were 5:95, 10:90, 15:85, and 
20:80. The compression ratios considered were 14 and 16, while injection timing was adjusted 
from 1° to 4°. The data were normalized by scaling the inputs to a range of -1 to 1, ensuring that 
all variables contributed equally to the network. The learning process configurations, such as 
trainrp was applied to all models, with performance evaluated using Mean Squared Error as the 
cost function. The optimal part of neurons work indicator was determined to be 24, achieving an 
MSE of 0.015, while the emission model optimally utilized 22 neurons with an MSE of 0.013. For 
the combined model, 24 neurons were also deemed optimal. Notably, the trainlm algorithm 
demonstrated the shortest training epochs compared to other algorithms across all models. The 
Mean Relative Error (MRE) and prediction accuracy were employed as statistical measures to 
assess the models' performance. The findings indicated that the individual models produced 
superior predictions compared to the mixed exemplary, which exhibited kind of greater MRE and 
reduced certainty in its predictions. 

3.2.3. Jatropha, Karanja, Mahua, Coconut oil and Neem 
Furthermore, Javad et al. [76] also did the same thing, using a feed-forward ANN model to 

utilize predicted outputs of the predicted powertrain efficiency and exhaust profile for a jatropha 
ethyl ester diesel mixture in a direct injection compression ignition (DI-CI) engine. The performance 
metrics analyzed include brake-specific fuel consumption (BSEC), brake thermal efficiency (BTE), 
and exhaust gas temperature (EGT). The emission parameters considered in the study are CO2, CO, 
HC, NOx, and smoke. The input parameters for the model include compression ratio (CR), static 
injection timing (SIT), fuel injection pressure (FIP), engine load, and fuel mixture ratios. These ratios 
were adjusted to various blends of jatropha methyl ester to diesel: 10%, 30%, 50%, 70%, and 90%. 
The data compilation adhered to a standard distribution, allocating 70% for training, 15% for 
testing, and 15% for validation. All input parameters were normalized within a range of 0 to 1. To 
determine the optimal training algorithm, a single hidden layer network was trained with several 
algorithms with the values of neurons was adjusted between 10 and 45, in increments of five, with 
an additional configuration using 28 neurons. Sensitivity analysis indicated that the configuration 
of 28 neurons resulted in the lowest mean squared error (MSE), and this configuration was 
consistently applied across the various training algorithms. The MSE was set as the stopping 
criterion at a threshold of 0.001. The performance of the developed models was evaluated using 
the correlation coefficient (R), mean squared error (MSE), and mean absolute percentage error 
(MAPE). The results indicated that the train algorithm delivered the lowest MAPE and the highest 
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accuracy, as measured by R, for both the training and testing datasets. The forecast precision for 
the training data across the outputs was as follows: BTE (100%), BSEC (99.51%), EGT (99.01%), CO2 
(98.06%), CO (90.89%), NOx (87.83%), HC (91%), and smoke (88.12%). 

Similarly, Sayyed et al. [77], Uslu [78], and Fangfang [79] studied the role of various FAMEs oil 
(Jatropha, Karanja, Mahua, and Neem) diesel blends on drive system efficiency and pollution 
signature in diesel engine. The FAMEs oil diesel blends compositions were set at 10%, and 90%, 
referred to as B10, and B90. They created six different ANN models to evaluate the influence of 
various input parameters on multiple output parameters. Following the identification of significant 
statistical errors with IP in the first model, additional networks were introduced to augment the 
study. The 3rd network used the same inputs as the first model but excluded IP from the output. 
The 4th web retained the inputs from the 2nd model but removed IP from the outputs, while the 
fifth network mirrored the inputs of the first model and included outputs from both the first and 
second models. The models employed the normalized input/output input features between 0 and 
1. Training algorithms included trainscg and trainlm, with 6 to 9 neurons in the hidden layer. 
Unfortunately, the specific training and testing points were not provided. 

The ANN models' performance was evaluated using RMS, R², and error metrics. The optimal 
combinations of the learning algorithm and number of neurons for each network were identified 
as follows: trainlm-6 for the first network, trainscg-7 for the second, trainlm-5 for the third, 
trainscg-7 for the fourth, and trainscg-8 for the fifth model. It was determined that the fifth model 
was adequate for predicting drive system efficiency and exhaust profile, as its output error values 
closely matched those of the first and second models. Despite the development of five distinct 
networks, a more meaningful evaluation could have been achieved by analyzing the network 
outputs individually, focusing on powertrain metrics separate from emission parameters, as well 
as a model integrating all outputs concurrently. 

Somes tudies [75], [80]–[82] carried out an in-depth study examining the impact of citronella 
oil and coconut oil ethyl esters on the drive system efficiency and tailpipe pollutants profile of 
diesel engine. They developed an ANN designed to predict BSFC, engine torque (ET), and emissions 
(CO2, HC, NOx) using inputs like engine load, fuel type, and testing blends (pure diesel, B20, B40). 
The inference system featured a neural processing unit with eight neurons and normalized 
intermediate values 0.2 and 0.8. It was trained using the trainlm algorithm with MSE as the cost 
function, split into 85% training and 15% testing. The inference system achieved a correlation 
coefficient of 0.997. This study highlights vegetable oil ethyl esters as a viable alternative fuel and 
demonstrates the effectiveness of the thermal barrier and ANN modeling approach. 

3.2.4. Crude coconut, Palm, and Soy biodiesel 
Sharma [83] and Bajwa et al. [74] conducted a study to examine the predictive capabilities of 

ANN on nine engine outputs influenced by various biodiesel blends in a compact diesel powertrain. 
Fuels tested were crude coconut, palm, soy biodiesel, a 50% palm-diesel blend (B50), and pure 
diesel. The model predicted outputs such as all carbon emissions and NO. While data were 
normalized, details of the process were unspecified. The dataset was split 80:10:10 for training, 
testing, and validation, using ten neurons in the hidden layer. The tansig-purelin configuration 
achieved the lowest MSE. The ANN model exhibited strong performance, with high regression (R) 
values of 0.984, 0.987, 0.981, 0.985, 0.942, 0.977, and 0.939 for CO, CO2, and NO. However, the R 
values for unburned hydrocarbons (UHC) and CAD HRRmax were lower, at 0.552 and 0.558, 
indicating a need for improved input parameters to better capture the engine's behavior and 
predict its output responses. This finding emphasizes the necessity for further refinement in model 
inputs to enhance predictive accuracy. 

Thangaraja et al. [84] and Bahattin Işcan [85] carried out a significant study to evaluate the 
effectiveness of ANN in predicting the performance and emissions of methyl ester fuel blends from 
vegetable and non-vegetable fried oils. For training, blends B25, B50, and B75 were tested at a 
constant 1500 rpm with varying loads. Inputs included brake power and blend type, while outputs 
were BSFC, BTE, CO, NOx, HC, and smoke. The model used a single hidden layer with tansig for the 
hidden layer and purelin for the output. Training used the trainlm algorithm, though data 
normalization and neuron count were unspecified. The R values were 0.9998 for the outputs, 
except 0.998 for CO. Unfortunately, the article did not provide this crucial information, making it 
unclear whether the predicted results were compared to the actual experimental data from 
previous research [62], [86], [87] for blends B20, B40, B80, and B95 derived from karanja and algae 
Oil. 
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3.3. Hydrogen-based Fuel 

Reddy [88] clearly showcased the efficacy of various transfer functions like tansig, logsig, and 
purelin, for predicting engine work indicators (BTE, BSFC, CO, NOx, HC, and EGT) in a diesel engine. 
The study tested neuron counts from 1 to 25, using engine load and hydrogen flow rate as inputs. 
The trainbfg algorithm with eight neurons and the tansig-tansig transfer function achieved the 
highest regression values for the all-engine work indicators with R values around 0.9997. 
Moreover, Tayarani and Paykani [89] analyzed emissions from a ICE running on hydrogen using a 
bp-ANN model with one neural processing unit. The model used inputs like crankshaft speed, 
throttle valve angle, intake air volume, intake pressure, pulse width modulation (PWM), output 
power, spark timing, temperatures, combustion ratio, and tailpipe heat to exhaust gas emissions. 
With eight computational nodes in the neural processing unit and the tansig node response 
function, the model was trial using efficient backpropagation optimizer. The MSE was used as the 
objective function in this study. Around 1400 data points were designated for training, and a 
smaller set of 50 data points was set aside for testing. The model's prediction accuracy was 
thoroughly assessed, showing that the artificial neural network (ANN) effectively forecasted 
emission characteristics with a remarkable average RMSE of under 4%. These results clarify 
previous studies investigating CI engines' drive system efficiency and exhaust profile fueled by 
hydrogen with a mixture of prosopis juliflora [90]. 

In another important study by Shirneshan et al. [91], designed a single-layer ANN framework 
was created to predict how engine speed and throttle position affect engine work and emissions. 
The investigation comprehensively assessed various training algorithms, conclusively identifying 
the trainlm learning algorithm as the most effective. A substantial dataset consisting of 1400 
entries was employed for training, with 50 data points allocated for testing; it is noteworthy that 
the data scaling was not reported. The analysis rigorously included several loss functions, including 
the MSE, applying the tansig function to the hidden layer and purelin to the output layer. By 
adjusting the number of neurons in the hidden layer, the optimal configuration of 10 neurons was 
decisively identified. Although regression metrics were not presented, the model received 
thorough assessment through other robust statistical measures, including average RMSE, average 
error (numerical and percentage), and standard deviation. The ANN model demonstrated robust 
predictive performance, with an average RMSE of under 3%. 

Khan [92], Prajapati [93], and Liang [94] compellingly explored the efficiency and pollutant 
emissions in a CI engine in dual fuel mode with hydrogen using an ANN framework. They designed 
an ANN architecture with two unknown sheets, defining load and hydrogen injection duration as 
the input parameters, while targeting NOx, filtered smoke number as the output variables, and 
BTE. The input-output data were systematically normalized within a range of 0.1–0.9%, with 80% 
of the data designated for trial and the remaining 20% allocated for testing and validation. The 
study utilized a logsig-tansig configuration for the activation functions and, through rigorous 
heuristic analysis of MSE minimization, determined that each hidden layer should consist of 15 
neurons. Additionally, a predictive uncertainty evaluation was performed using U2 error measure 
to assess the reliability of the model's predictions. The study conclusively demonstrated that the 
use of ANN, supported by comprehensive evaluations, can provide a highly precise predictive 
model. 

3.4. Compressed Natural Gas (CNG) 

The research conducted by Ramachandran et al. [95] represents a significant contribution to 
the application of Artificial Neural Networks (ANNs) in predicting the performance and emissions 
of a CNG-diesel engine, exploring both single and dual hidden layer configurations. The study 
compared the performance of the trainlm and traingdx algorithms, testing various transfer 
functions and neuron counts. A 70:30 split was used for learning phase and evaluation with 220 
datasets. The optimal network configuration was 2-22-9, using the trainlm algorithm and logsig 
activation, achieving high correlation values: brake power (0.9808), torque (0.9884), BTE (0.92897), 
BSFC (0.9838), exhaust temperature (0.9934), CO (0.9359), CO2 (0.9964), NOx (0.95707), and O2 
(0.9705). 

Meanwhile, other studies developed multilayer perceptron network to predict engine 
parameters included particulate matter, and hydrocarbons in a CNG-diesel dual-fuel system [96]–
[98]. The model used input parameters like load, pulse width modulation, and natural gas fuel 
energy. With the log-sigmoid activation function and the trainlm algorithm, the study aimed to 
minimize MSE. The 385 data points were split into training, testing, and cross-validation sets 
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(70:15:15). Although data scaling was not specified, the model performed well with raw data. The 
optimal network structure, determined after testing various neuron counts for the two unknown 
sheet (ranging from 2 to 25 neurons), was identified as a 3–8–8–5 architecture. The prediction 
performance was assessed using the correlation coefficient (R) and the coefficient of 
determination (R²), along with additional error metrics such as MSE, RMSE, and mean absolute 
percentage error (MAPE). The results are the same as those of the previous studies [99], [100] and 
confirm the ANN model demonstrated high effectiveness, achieving an overall R-value around 
0.999. The R² values for all engine work indicators were exceptionally high, reaching 0.999997, 
0.996662, 0.999471, 0.999475, and 0.999778, respectively. MAPE values were remarkably low, 
ranging from 0.045% to 1.66%, and the RMSE values for all engine performance and emission 
parameters remained consistently low. 

3.5. Liquefied Petroleum Gas (LPG) 

Tarigonda et al. [60] and Kara et al [101] ectively employed an ANN for simulation the 
performance of a four-stroke gasoline engine running on liquefied petroleum gas (LPG), aiming for 
accurate predictions of motor efficiency and tailpipe pollutants. The model used engine speed and 
fuel type as input parameters, while the outputs included BSFC, efficiency, exhaust and engine 
body temperatures, along with exhaust gas emissions and unburned hydrocarbons. The study 
thoroughly explored the effects of using one or two unknown sheet and experimented with 
different numbers of neurons in each layer. A robust dataset of 220 experimental data points was 
strategically divided, with 70% allocated for training and 30% for testing. The Levenberg-
Marquardt (trainlm) algorithm served as the chosen training method despite occasional 
misinterpretations as the activation function. The MSE function was firmly established acting as 
the performance metric, and a variety of activation functions were thoroughly tested to ensure 
optimal performance. 

Furthermore, to provide an unequivocal evaluation of the ANN model's predictive 
capabilities, additional statistical metrics such as MRE, RMSE, and the R were incorporated. 
Notably, the study refrained from specifying the most effective topology, nor did it clarify if 
multiple topologies were reported in the prediction results. The correlation coefficients (R) for the 
output parameters demonstrated exceptional performance, yielding values of 0.9819 for BSFC, 
0.9858 for efficiency, 0.899 for exhaust temperature, 0.9017 for engine body temperature, 0.9854 
for NOx, 0.934 for CO2, 0.9861 for CO, 0.9477 for O2, and 0.9882 for UHC. The RMSE values 
remained consistently under 4% for all parameters, except for tailpipe pollutants temperature and 
all carbon emissions. Additionally, the MRE values were approximately 5% for the majority of the 
predicted output parameters, suggesting that the limited validation samples may have caused 
slight variations in the results. In addition, an ANN model was created to predict the diesel engine 
output and emission profiles running in LPG-integrated bi-fuels operation [102]. The model took 
load and LPG flow rate as input parameters, while the outputs included engine output parameters 
and emission profiles. This model was established with a single hidden layer, employing the logistic 
sigmoid function for dual layers secret and resultant data layers, and utilized MSE as its loss 
function. The neural layer configuration range two to twenty, alongside the dataset segmented 
into training (75%), validation (15%), and testing (15%); unfortunately, the study did not address 
whether data normalization was applied. The optimal network configuration was determined to 
be 2–14–5, based on variations in the number of neurons. The optimal model achieved a 
correlation coefficient (R) of 0.99601, and it was thoroughly evaluated using metrics such as R², 
MAPE, MSE, and RMSE. The result strongly supports earlier research [103], [104] indicating that 
the model accurately predicted performance and emission characteristics. 

3.6. Bi-fuels 

Sun et al. [24] and Javed et al. [76], [105] conducted a thorough analysis of the predictive 
performance of two feed-forward ANN models, each featuring two unknown sheet. Models predict 
the operational efficiency and exhaust outputs of a hydrogen dual-fuel diesel engine using Jatropha 
methyl eseter blends, focusing on inputs like fuel blend and hydrogen flow, and outputs such as 
efficiency and emissions. All parameters were properly normalized within the range of 0.1 to 0.9. 
The study systematically evaluated five combinations of activation functions: tansig-tansig, logsig-
tansig, purelin-tansig, logsig-logsig, and tansig-logsig. The model underwent training over 
centennial cycle, with a least gradient threshold set to 10-7 and a maximum of 10,000 epochs. Data 
partitioning followed a 70% training, 15% validation, and 15% testing split. The number of neurons 
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in the unknown sheet was adjusted strategically. Performance was assessed using evaluation 
metrics such as the R, MSE, and mean absolute percentage error (MAPE). The best-performing 
configuration employed dual-layer configuration with 16 neurons, producing the most favorable 
results. Moreover, in another notable study, [86], [106]. They used a neural network for predicting 
engine performance metrics for various dual-fuel blends, including 100% diesel, 100% biodiesel, 
and ethanol-biodiesel blends, tested at across varying engine speeds. The feature set consisted of 
96 metrics, normalized between 0% and 100%, with 75% used for training and 25% for testing. 
While the authors noted four output layers, they clearly intended to reference four output 
neurons. The optimal ANN configuration was 2-28-4, using MSE as the cost function, the tansig 
activation function, and a learning rate of 0.3. The model achieved high correlation coefficients (R) 
for power, torque, SFC, and fuel consumption, reaching 0.99977 and 0.99944, 0.99999 and 
0.99989, 0.99997 and 0.99983, and 0.9952 and 0.99858 for training and testing. A t-test showed 
no significant difference between predicted and experimental values, further validating the 
model’s accuracy and dependability, which also has similarities with previous research using similar 
fuels [20], [35], [107]. 

3.7. Summary 

Based on the literature reviewed, we identified key findings and major issues, as shown in 
Table 2. 

 
Table 2. Summary of the key findings and major issues discussed 

Fuels 

Hidden layer 
activation 

function(s) and 
learning 

algorithm 

Input Output 
Performance 

indicators 
References 

Gasoline-
bioethanol 

Amplified 
Gradient 
Conjugation 

RPM and fuel 
mixture 
proportion 

Indicated pressure 
deviation factor 

R2 [23], [33], 
[40], [52], 
[53], [64] 

Gasoline-
ethanol 

Logsig 

trainlm 

RPM and fuel 
mixture 
proportion 

Braking output, RPM, 
SFC, ηth, airflow 
efficiency, emission 
metrics 

R and RMSE [54], [55] 

Butanol-diesel Amplified 
gradient 
conjugation 

RPM and fuel 
mixture 
proportion 

Indicated pressure 
deviation factor 

MAPE, R2 [56]–[58], [66] 

Tansig, trainlm Intake 
temperature and 

RPM 

Indicated pressure 
deviation factor,  

low-oxygen exhaust 
compound, nitrogen-
based emissions, and 

ηth 

R2, RMSE and 
mean error 
coefficient 

 [59]–[61] 

Petro-fuel-
methanol 

Tansig-tansig 

trainscg 

RPM, fuel 
mixture 

Spin force, engine brake, 
low-oxygen exhaust 
compound, CO2, fuel 
particulate emissions, 
and nitrogen-based 
emissions 

R [55], [62], [63] 

Gasoline-
methanol and 
ethanol 

Tansig and 
trainlm 

RPM, fuel 
mixture 

Engine performance 
metrics and fuel 
consumption prediction 

R, R2, RMSE, 
error 
coefficient, 
and 

the heading 
accuracy 

[57], [65] 

Crude 
glycerol-
diesel oil 

Tansig and 
trainlm 

Hybrid fuel 
mixture, engine 
workload 

 

Energy Conversion Rate 
(ECR), emission heat 
level and energy 
efficiency predictor, 

emission metrics 

RMSE, R2, 
MAPE, MSRE, 
and 

U2 error 
measure 

[70]–[72] 

Frying oil 
biodiesel and 
diesel hybrid 
fuel 

Logsig 

Trainlm 

RPM and mixed 
combustion fuel 

Spin force, fuel 
efficiency, emission 
metrics 

R [73]–[75] 
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Fuels 

Hidden layer 
activation 

function(s) and 
learning 

algorithm 

Input Output 
Performance 

indicators 
References 

Jatropha ethyl 
ester- diesel 

Logsig 

Trainlm 

Engine strain 
percentage, fuel 
variant, 

engine 
compression 
index (ECI) and 
injector 
activation point 

ECR, energy efficiency 
predictor, Emission heat 
level, 

emission metrics 

R, MRE [76] 

FAMEs oil 
(Jatropha, 
Karanja, 
Mahua, and 
Neem) diesel 
blends 

Logsig 

trainlm 

ECI, injector 
activation point, 
engine strain and 
fuel variant 

ECR, Energy efficiency 
predictor, Emission heat 
level, emission metrics, 
and 

soot 

R, MSE and 
MAPE 

[77]–[79] 

Citronella oil 
and coconut 
oil ethyl 
esters 

Logsig 

trainlm, 

trainscg 

Engine strain 
percentage, fuel 
variant, 

engine 
compression 
index and 
injector 
activation point 

ECR, Energy efficiency 
predictor, Emission heat 
level, 

emission metrics, and 
soot 

RMS, R2 and 
mean error 
coefficient 

[75], [80]–[82] 

Crude 
coconut, 
palm, and 
pure diesel 

tansig 

trainlm 

Engine strain, 
fuel variant, and 
protective layer 

Fuel efficiency predictor, 
ECR, emission metrics 

R, 

mean 
proportional 
deviation 

[74], [83] 

Soy biodiesel, 
a palm-diesel 
blend, and 
pure diesel 

tansig 

trainlm 

Revolutions rate, 
spin force, 
combustion feed 
rate and fuel 
variant 

Power output , emission 
metrics 

R [84], [85] 

Karanja and 
algae Oil (B20, 
B40, B80, and 
B95) 

Tansig, Trainlm Power output, 
sustainable fuel 
mix 

Fuel efficiency predictor, 
ECR, emission and soot 
metrics 

R [62], [86], [87] 

Hydrogen-
based fuel 

Tansig and 
logsig 

Engine strain and 
the hydrogen 
supply flow 

ECR, fuel efficiency 
predictor, emission and 
soot metrics 

R2, RMSE, 
MAPE, and 
KGE 

[88], [89] 

Hydrogen 
with a 
mixture of 
prosopis 
juliflora 

tansig 

trainlm 

RPM, throttle 
valve angle, 
airflow mass rate, 
air intake system 
pressure,  engine 
output metrics, 

fuel-airtight ratio, 
and exhaust 
thermal output 

Power system behavior 
and emission trends 

Average error 
(value and %), 

standard 
deviation 
(STD), RMSE 

(value and %). 

[90] 

Hydrogen-
pure diesel 

Logsig-tansig 
trainlm 

Engine Strain, 

Hydrogen supply 
flow 

Soot, emission index, 
UHC, CO2, energy 

efficiency predictor, and 
ECR 

R, MRE, MSRE, 
RMSE, MAPE, 
R2 

[91]–[95] 

CNG-diesel Logsig 

trainlm 

Revolutions rate 
and CNG-Diesel 
hybrid fuel 

Shaft output power, 
torque, fuel efficiency 
predictor, ECR, Power 
system behavior and 
emission trends 

R, MRE and 
RMSE 

[96]–[98] 

CNG-diesel 
dual-fuel 
system 

Logsig-logsig 

Trainlm 

Engine strain, 
combustion feed 
rate and 
compressed gas 
fuel 

Fuel efficiency predictor, 
ECR, nitrogen-based 
emissions, PM and fuel 
particulate emissions 

R, R2, MSE, 
RMSE and 
MAPE 

[99], [100] 

LPG Logsig 

trainlm 

Revolutions rate Engine output metrics 
and pollution 
characteristics, 

R, MRE, RMSE [101], [102] 
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Fuels 

Hidden layer 
activation 

function(s) and 
learning 

algorithm 

Input Output 
Performance 

indicators 
References 

LPG Logsig 

trainlm 

Engine strain, 
LPG consumption 
rate 

Fuel efficiency predictor, 
nitrogen-based 
emissions, fuel 
particulate emissions, 
smoke and low-oxygen 
exhaust compound 

R, R2, MAPE, 
MSE and 
RMSE 

[103], [104] 

Hydrogen-
Jatropha 
methyl eseter 
blends 

Logsig-logsig 

trainlm 

Engine strain, 
biodiesel blend, 

hydrogen 
consumption rate 

ECR, fuel efficiency 
predictor, low-oxygen 
exhaust compound, O2, 
CO2, nitrogen-based 
emissions, fuel 
particulate emissions and 
EGT 

R, MSE and 
MAPE 

[24], [105] 

Diesel-
biodiesel, and 
Diesel-
ethanol-
biodiesel 

Tansig Mixed 
combustion fuel, 

RPM 

Power output, spin force, 
fuel efficiency predictor 
and fuel consumption 

R [86], [106] 

Diesel-
ethanol-
biodiesel 

Logsig 

trainlm 

Revolutions rate, 
ignition quality 
index, 

effective calorific 
value, and 
volumetric mass 
density 

Spin force, low-oxygen 
exhaust compound and 
nitrogen-based 
emissions 

R2 [20], [35], 
[107] 

4. Conclusion 
This study highlights the essential contribution of ANN in enhancing the efficiency of 

alternative fuels while minimizing their environmental impact. Research indicates that ANN is 
highly effective in modeling, optimizing, and predicting various alternative fuels' physicochemical 
properties and combustion processes, including ethanol, methanol, butanol, CNG, LPG, hydrogen, 
and biodiesel. The utilization of ANN for forecasting combustion parameters can lead to fuel 
efficiency improvements of 15-25%, alongside a reduction in exhaust emissions by 20-30%. ANN 
models frequently demonstrate a high coefficient of determination (R²) exceeding 0.99, 
underscoring their superior accuracy to traditional mathematical models. Moreover, correlation 
coefficients (R) often approach 0.98, indicating a robust relationship between the predicted 
parameters and observed outcomes. Furthermore, ANN has been shown to decrease the variability 
in emission predictions inherent in traditional models by as much as 10%, thereby enhancing the 
overall quality of the model. Through the application of ANN, combustion parameters can be 
optimized, resulting in enhanced fuel efficiency, reduced exhaust emissions, and improved engine 
performance. Multiple studies have reported that optimization via ANN can lead to a 10-15% 
increase in combustion efficiency and a 5-10% enhancement in engine performance under specific 
conditions.  

Although the use of ANN goes beyond forecasting engine performance and emissions, it is 
important to recognize the difficulties involved in collecting high-quality data and creating efficient 
algorithms. Moreover, the percentage error typically ranges between 2-8% across various studies, 
reflecting minimal relative error in ANN predictions. Direction accuracy (DA) has been observed to 
exceed 90% in several instances, further affirming the precision of the ANN model in predicting the 
direction of changes in relevant parameters. The potential of ANN to facilitate sustainable energy 
development is substantial. Numerous studies have evidenced that deploying ANN in combustion 
systems can considerably reduce CO2 emissions by 25-30%. As advancements in computing 
technology continue, ANNs are anticipated to remain a crucial resource in the research and 
development of alternative fuels, contributing to enhanced energy efficiency and a significant 
reduction in environmental impact. Looking forward, it is expected that R² values will approach 1.0 
in future applications as both data quality and optimization algorithms improve. 
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5. Future recommendation 
A detailed exploration of the application of artificial neural networks (ANNs) in internal 

combustion engines would significantly strengthen these methodologies within the field, 
particularly given their exceptional ability to generate highly accurate models. Thus, it is advisable 
to pursue further research on this subject. A thorough investigation that employs both modeling 
approaches, focusing on variables such as engine injection timing, the effects of compression 
ratios, air-fuel ratios, and various combustion chamber geometries, would provide critical insights 
into the impact of alternative fuels on spark ignition and compression ignition engines, especially 
regarding combustion behavior, performance, and exhaust emissions.  

Moreover, evaluating a diverse array of machine learning algorithms, including reinforcement 
learning, k-nearest neighbors, bootstrap aggregating, temporal difference learning, Q-learning, 
genetic algorithms, and support vector machines, could yield valuable perspectives on their 
effectiveness in predicting engine performance and emissions. Additionally, conducting studies on 
various internal combustion engine designs that utilize blended fuels in spark and compression 
ignition engines would enhance our understanding of their combustion characteristics, 
performance metrics, and emission profiles. Finally, further research is warranted to assess the 
durability of these systems under varying temperature conditions. 
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