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Highlights: 

• This article utilizes the Random Vector Functional Link (RVFL) method to predict the 
Remaining Useful Life (RUL) of slew bearing.  

• This study presents a comparison of four activation functions i.e., SELU, ReLU, Sigmoid, and 
Sine. 

• The optimal model was achieved using an 80:20 data split for training and testing, along with 
the SELU activation function. 

• The developed model is capable of predicting the RUL of bearings with an accuracy of 94.24%. 

 

Abstract 

Bearings have a very important role in an industry. However, the cost of maintenance and 
replacement of bearings are very expensive, especially for slew-bearing which operates at a very 
low speed. If the low-speed slew bearing fault suddenly, it will shut down the entire rotating 
machine and also cause a financial issue due to the termination of production process in the certain 
industries. Therefore, monitoring of the low-speed slew bearing condition at all times is necessary 
to predict the bearing failure. There has been advance monitoring devices and systems related to 
the vibration condition monitoring for bearing and rotating machines, however, in certain cases 
those monitoring devices and systems are not sufficient due to a lack of decision support system. 
Machine learning (ML) is offered to complement and contribute in this case which aims to predict 
the Remaining Useful Life (RUL) severe damage occurred. In this paper, the Random Vector 
Functional Link (RVFL) is used to predict the RUL of the vibration bearing data collected from run-
to-failure low speed slew bearing experiment. A few of activation functions such as Scaled 
Exponential Linear Unit (SELU), Rectified Linear Unit (ReLU), Sigmoid, and Sine were also studied 
to obtained the most appropriate prediction model. The selection of the best activation function 
for the prediction model is based on the evaluation matrix such as Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). According to the 
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prediction results, the best modeling results are obtained using a data ratio of 80:20 and the SELU 
activation function that produces the best average RMSE value. The RUL prediction of the bearing 
is 94.24%. In practice, this production accuracy is acceptable. However, further study to improve 
the accuracy is necessary by increase the bearing data as well as the sample of bearing under 
investigation. The RVFL method were also compared with Extreme Learning Machine (ELM) and 
Artificial Neural Network (ANN) with the result of RVFL is outperformed. 

Keywords: Low speed slew bearing; Remaining useful Life; Random vector functional link 

1. Introduction 
For decades, technology has been developing rapidly, particularly in the industrial sector. This 

development has significantly impacted various industrial fields including the steel manufacturing 
industry. In the industrial sector and particularly steel manufacturing, rotating machinery plays an 
important role in supporting the production. In steel manufacturing, slew bearings operating at 
low rotational speeds are frequently utilized in the rotating machines. These bearings often 
encounter conditions that require them to perform under strenuous circumstances, resulting in 
high replacement costs and extended delivery times [1]. Consequently, continuous condition 
monitoring of slew bearings is essential [2], [3]. Typically, maintenance and replacement of 
unserviceable low-speed slew bearings are performed as preventive measures to avert unexpected 
failures. To optimize the use of low-speed slew bearings and prevent sudden breakdowns, early 
fault detection monitoring methods are required. One such method involves the prognosis of 
Remaining Useful Life (RUL) [4]. Prognosing the RUL of bearings is crucial for monitoring their 
condition, preventing undesirable downtime, and enhancing machine reliability [3]. The RUL of a 
bearing refers to the estimated remaining life before it experiences functional failure, which, in 
this design, is indicated by a degradation index value surpassing a defined threshold.  

Predicting the RUL of bearings can be achieved using various machine learning (ML) methods 
[5], such as Linear Regression (LR) [6], Graph Neural Network (GNN), Random Forest (RF), Bayesian 
Regression (BR), and Random Vector Functional Link (RVFL). In addition, deep learning methods [7] 
such as Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) were recently 
applied in bearing fault diagnostics [8], [9].  

In this study, the run to failure bearing data will be predicted using the RVFL method. The 
RVFL is a Single Layer Feedforward Neural Network (SLFNN) in which the weights and biases of the 
hidden neurons are randomly generated within an appropriate range and kept constant, while the 
output weights are computed through a simple closed-form solution [10]. Random-based neural 
networks benefit significantly from the direct connections between the input and output layers, as 
seen in RVFL networks.  

This design offers the RVFL method to determine the RUL of bearings. The RVFL method offers 
several advantages over other ML methods, including rapid learning, simple design, high 
generalization capability, universal approximation ability, and efficient estimation accuracy [11], 
[12]. Based on these advantages, the RVFL method is offered in this design to predict and estimate 
the RUL of bearings. 

2. Methods 

2.1. Feature Extraction 

The dataset utilized for the RVFL prediction consists of five time-series features: Root Mean 
Square (RMS), kurtosis, variance, histogram upper, and histogram lower. These features are 
extracted from the raw vibration data available and are used to monitor the daily condition of high-
load slew bearings undergoing degradation. They serve as indicators of the bearing's state, as 
significant changes in these features correspond to increased vibration levels with associate to the 
bearing condition. When the damage becomes severe, the vibration signal surpasses the abnormal 
level. Therefore, it is essential to employ reliable and appropriate features for monitoring the 
condition of slew bearings. The selected time-series features for this study include is described in 
as follows: 

2.1.1. Root Mean Square (RMS) 

The RMS feature is the square root value of the average signal sum of squares as presented 
in Eq. (1). 
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2
𝑁

𝑖=1
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where 𝑥𝑖  are the individual vibration data values and 𝑁 is the number of data values. 

2.1.2. Variance 

The Variance feature is used to measure the dispersion of a signal or dataset around its mean 
reference. The Variance feature is represented in Eq. (2). 

𝜎2 =  
1

𝑁
∑ (𝑥𝑖 − 𝑚)2

𝑁

𝑖=1
 (2) 

where m is the mean of the vibration data. 

2.1.3. Kurtosis 

The Kurtosis feature is used to measure the flatness of the Probability Density Function (PDF) 
near the centre. The Kurtosis feature is calculated in Eq. (3). 

𝐾𝑢 =  
1

𝑁
∑ (

𝑥𝑖 − 𝑚

𝜎
)

4𝑁

𝑖=1
 (3) 

where 𝜎 is the standard deviation of the vibration data. 

2.1.4. Histogram Upper 

The histogram is a discrete probability density function. The Histogram Upper feature is 
described in Eq. (4). 

ℎ𝑖 =  ∑ 𝑟𝑖(𝑥𝑖)

𝑁

𝑖=0

 

ℎ𝑈 = max(𝑥𝑖) +  ∆/2 

(4) 

where ℎ𝑖  is the columns of the histogram for the time 𝑥𝑖  with the range 0 ≪ 𝑖 < 𝑑 
where 𝑟𝑖  is  

𝑟𝑖 = {1,    𝑖𝑓 
𝑖(max(𝑥𝑖) − min(𝑥𝑖))

𝑑
≤ 𝑥 <
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𝑑
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                   

 (5) 

and 𝑑 be the number of divisions that group the ranges 

2.1.5. Histogram Lower 

The histogram is a discrete probability density function. The Histogram Lower feature is 
calculated in Eq. (6). 

ℎ𝑖 =  ∑ 𝑟𝑖(𝑥𝑖)

𝑛

𝑗=0

 

ℎ𝐿 = max(𝑥𝑖) − ∆/2 

(6) 

2.2. Degradation Index 

Degradation index is used as a part of prognostic method to predict maintenance and health 
monitoring of the bearing [13]. The degradation index value can be determined by summing all the 
features that will be used [14]. The degradation index is presented in Eq. (7): 

𝑍 =
1

𝑟
∑ 𝑟𝑡

𝑡

𝑖=1

 (7) 

where Z is degradation index, t = time (day), and r = feature extraction 
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2.3. Random Vector Functional Link 

Random Vector Functional Link (RVFL) is a part of ML that belongs to the supervised learning 
category. The RVFL is a single-layer feed-forward neural network where the weights and biases of 
the hidden neurons are randomly generated within an appropriate range and kept similar. In 
contrast, the output weights are calculated from a simple closed-form approach [10]. The direct 
link from the input layer to the output layer in RVFL networks makes the randomization-based 
neural networks advantageous [15]. The original features are reused and passed to the output 
layer through the direct connection. The direct link serves as a regularization for randomization. 
With the direct relationship between input and output, the model complexity of this RVFL network 
becomes lower and simpler when compared to other methods [10].   

RVFL is a randomized version of the Single Layer Feedforward Neural Network or SLFNN, with 
three layers: input layer, hidden layer, and output layer. The three layers consist of neurons 
connected through weights [16]. The layers are interconnected as shown in RVFL structure and 
presented in Figure 1. 

 

Figure 1. 
RVFL structure. 

Adapted from [14]  
 
A detail structure of the RVFL method including the layers and the parameters is presented 

in Figure 1. According to Figure 1, the input layer to the output layer in RVFL consists of non-linearly 
transformed features H from the hidden layer and the original input features in X. If d is the input 
data features and N is the number of hidden nodes, then there is a total of d + N inputs for each 
output node. Since the matrix H are randomly generated parameters and fixed during the training 
phase, only the output weight β needs to be calculated. For the prediction purpose, the RVFL 
prediction model is calculated in Eq. (8) [16]. 

𝑦𝑖 =  ∑ 𝛽𝑗ℎ𝑗(𝑤𝑗
𝑇 , 𝑏𝑗 , 𝑥) +  ∑ 𝛽𝑗𝑥𝑗

𝐿+𝑚

𝑗=𝐿+1

𝐿

𝑗=1

 (8) 

where 𝑦𝑖  is the prediction output, 𝐿 is number of neurons in hidden layer, 𝑏𝑗  is randomly selected 

bias 𝑤𝑗  is randomly selected weights, 𝛽𝑗  is weight between the output neuron and the j neuron, 

and 𝑚 is number of input features, and ℎ𝑗  is the activation function. The values of the hidden node 

parameters 𝑏𝑗  and 𝑤𝑗  are set randomly, while the layer parameters output are calculated 

analytically to ensure the performance of the network. The mathematical formulation of the 
hidden layer and output layer weights can be written in Eq. (9). 

𝐻 =  [
ℎ(𝑤1, 𝑏1, 𝑥1) ⋯ ℎ(𝑤𝐿 , 𝑏𝑙 , 𝑥1) 𝑥1

: : :
ℎ(𝑤1 , 𝑏1, 𝑥𝑁) ⋯ ℎ(𝑤𝐿 , 𝑏𝑙 , 𝑥𝑁)𝑥𝑁

]

𝑁 𝑥 𝑀

 (9) 

where H is matrix of hidden layer output. 
The output weight matrix 𝛽 and the target output prediction matrix 𝑌 is presented in Eqs. 

(10) and (11). 



Wahyu Caesarendra et al. 

Mechanical Engineering for Society and Industry, Vol. 5 No. 1 (2025) 194 

 

𝛽 =  [
𝛽1

:
𝛽𝑀

]

𝑀 𝑥 1

 (10) 

𝑌 =  [

𝑦1

:
𝑦𝑁

]

𝑁 𝑥 1

 (11) 

According to the mathematical formula derivation in Eqs. (9) – (11), the parameter 𝛽 value 
can be calculated in Eq. (12). 

𝛽 =  [𝐻𝑇  𝐻]−1𝐻𝑇𝑌 (12) 

In addition, 𝛽 represents the output weights and 𝑌 shows real output. 

2.4. Activation Function  

In this study, four activation functions i.e. Scaled Exponential Linear Unit (SELU), Rectified 
Linear Unit (ReLU), Sigmoid, and Sine were used and compared for bearing degradation prediction 
[17], [18]. A brief description of each activation function is presented as follows: 

2.4.1. Scaled Exponential Linear Unit 

Scaled Exponential Linear Unit (SELU) is an activation function commonly used in Feed 
Forward Neural Network (FNN). The SELU activation function is typically performed satisfactorily 
on FNN networks. The SELU activation function is described in Eq. (13).  

𝑓(𝑥) =  {
𝛼(𝑒𝑧 − 1), 𝑧 <  0
        λ(𝑧), 𝑧 ≥ 0

 (13) 

where 𝛼 is the slope at the negative part of the function and λ is scaling factor that functions to 
regulate the output amplitude, ensuring the network operates effectively without requiring 
additional normalization layers. In this study 𝛼 of 1.5 and λ of 1.05 were used in the calculation.  

2.4.2. Rectified Linear Unit (ReLU) 

ReLU is the most widely used activation function among deep learning researchers. ReLU is 
linear for all positive values, and zero for all negative values. ReLU activation function is described 
in Eq. (14).  

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (14) 

2.4.3. Sigmoid 

Sigmoid is a mathematical function that converts inputs into outputs between 0 and 1, often 
used in artificial neural networks to generate probability values. The Sigmoid activation function is 
shown in Eq. (15). 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 (15) 

2.4.4. Sine 

Sine is an activation function that uses the sine trigonometric function to convert inputs into 
outputs oscillating between 0 and 1. The Sine activation function is described in Eq. (16). 

𝑠𝑖𝑛(𝑥) (16) 

2.5. Evaluation Matrix 

To assess the prediction performance of RVFL method for slew bearing prognosis, the 
evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE) were used as presented in Eqs. (17) to (19) [19], [20].  

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)

2

𝑚

𝑖=1

 (17) 
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𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑋𝑖 − 𝑌𝑖

𝑋𝑖

|  𝑥 100%

𝑚

𝑖=1

 (19) 

where 𝑿𝒊 and 𝒀𝒊 is the actual and predicted value, respectively. 

2.6. Comparable Methods 

2.6.1. Extreme Learning Machine (ELM) 

The single hidden layer feedforward networks, also known as SLFNs, are among the most 
well-known types of feedforward neural networks [21]. Their learning capabilities and fault 
tolerance properties have been widely discussed in both theoretical and practical studies. The 
recent development of the Extreme Learning Machine (ELM) neural algorithm for SLFNs has been 
utilized to improve their performance [21]. ELM, as a relatively new learning method for 
feedforward neural networks, differs from conventional neural networks in that the hidden biases 
and input weights are randomly initialized and remain fixed throughout the learning process. 
Additionally, the output weights are determined analytically. These characteristics contribute to 
ELM's strong generalization performance and fast learning speed [22]. 

Extreme learning machine (ELM) is a training algorithm for single hidden layer feedforward 
neural network (SLFN), which converges much faster than traditional methods and yields promising 
performance. Due to its exceptional performance, Extreme Learning Machine (ELM) has been 
widely utilized in various real-time learning applications, including classification, clustering, and 
regression tasks [23]. The ELM has the advantages of not falling into a local minimum easily and 
possessing stronger generalization ability than traditional methods, making it widely applicable in 
many fields [24]. 

The process of building an ELM model typically follows three sequential steps: (I) an SLFN is 
created; (II) weights and biases of the network are randomly selected; (III) the output weights are 
estimated by inverting the hidden layer output matrix [25]. In the parameter random initialization 
stage, the hidden layer parameters are randomly initialized, and the activation function is 
determined. The activation function is a nonlinear mapping that maps the input data to the ELM 
feature space. Specifically, parameter initialization randomly generates the weight (w) and bias (b) 
of the hidden layer nodes [26]. 

2.6.2. Artificial Neural Network 

Artificial Neural Network (ANN) is one example of computational intelligence models and a 
good computational technique for modifying output based on input parameters and sparse 
experimental data [27]. ANNs are advanced computational frameworks that have evolved from 
the conceptual understanding of biological neural networks found in the human brain. These 
systems attempt to emulate human cognitive processes in a simplified, mathematical form. 
Although commonly associated with artificial intelligence, ANN predominantly operate on 
numerical and structured datasets. They present notable limitations when directly processing 
unstructured data types such as images, textual content, and audio signals [28]. 

The ANN consist of interconnected layers of artificial neurons that process data and learn 
patterns from input features. ANNs are widely used in regression and classification tasks due to 
their ability to model complex relationships in data. By adjusting the network's weights through 
training, ANNs can generalize patterns and make accurate predictions on unseen data. 

A single-layer neural network is referred to as a perceptron. However, most practical 
implementations utilize multiple interconnected layers, forming what is known as a Multilayer 
Perceptron (MLP). These networks comprise numerous neurons or units, each connected to others 
in adjacent layers. To introduce non-linearity and enable the modeling of complex relationships 
within the data, various activation functions are employed across the layers. Common activation 
functions include the Sigmoid (Logistic), Tanh, ReLU, and Leaky ReLU functions [27]. A simplified 
neural network model can be represented mathematically as presented in Eq. (20) [29]. 

ℎ𝜃(𝑥) =  
1

1 +  𝑒−𝜃𝑥𝑇  (20) 

where ℎ𝜃(𝑥) is the output, and x and 𝜃 are the parameter vectors input. 
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3. Experimental Setup and Data Acquisition 

3.1. Low-speed Slew Bearing Test-rig 

The experimental run-to-failure vibration bearing data in continuous mode were collected 
from a slew-bearing test rig adopted from steel mill industry. The test rig is designed to simulate a 
local steel-making company’s actual working conditions, such as high applied load and very low 
rotational speed. The rotational speed of the slew-bearing test rig is adjustable from 1 to 12 rpm 
using an inverted motor controller and gear reducer mechanism. The slew-bearing test rig picture 
is presented in Figure 2a. A schematic of laboratory slew-bearing test rig showing a slew bearing 
attached in the drive ring, the applied load from the hydraulic, and other detail equipment labels 
is presented in Figure 2b. 

 

Figure 2. 
Slew bearing 

laboratory test rig:  
(a) Actual picture;  

(b) Schematic drawing   
 
A low rotational speed variation was obtained using two systems: (1) a motor to main gear 

reducer double vee belt system, and (2) a final drive polychain belt drive. The test rig is designed 
comprehensively to consider safety and external vibration by using appropriate stress frame design 
specification and damper on the bottom side. The test rig consists of two control modes: (1) for 
continuous rotation and (2) for reversible rotation. The reversible rotation is a typical application 
in steel mining industry where the slew bearing run continuously in reversible rotation at 180 angle 
rotations. 
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3.2. Vibration Signal and Feature Extraction 

The vibration data of low-speed slew bearing experiment was acquired from four 

accelerometers installed on the inner radial surface at 90 to each other with the sampling rates 
of 4880 Hz [2]. The accelerometers were IMI 608A11 ICP-type sensors. The accelerometers were 
connected to a high-speed Pico scope DAQ (PS3424). The bearing was subjected to an axial load of 
15 tonnes. To provide continuous monitoring and produce run-to-failure bearing data, the bearing 
data was collected from February to August 2007 (139 days). In order to accelerate the bearing 
service life, coal dust was injected into the bearing in mid-April 2007 (58 days from the beginning) 
to simulate the actual working condition. In practice, especially in steel-making companies, the 
slew bearing is located in the open air and exposed to a dusty environment. A picture showing 
accelerometer sensors attachment on the slew bearing is presented in Figure 3. An example of the 
raw vibration signal on August 30 is presented in Figure 4a. The vibration data in time domain is 
transformed to frequency domain using Fast Fourier Transform (FFT) as presented in Figure 4b. It is 
shown in Figure 4b that the frequency content of the slew bearing is dominated with the low 
frequency spectrum. 

 

Figure 3. 
Acoustic emission and 
accelerometer sensor 
attached on the slew 

bearing   
 

Figure 4. 
Vibration data acquired 

on 30 August:  
(a) Raw vibration data;  

(b) FFT   

4. Result and Discussion 

4.1. Block Diagram of Prognostics Method based on RVFL 

A block diagram of proposed prognostics method based on RVFL method that applied in slew 
bearing vibration data is presented in Figure 5. The method starts with the feature extraction of the 
raw vibration data and followed by the degradation index calculation. The RVFL model is developed 
based on the training data and the build model is tested using the testing data. The RVFL model 
development include the selection of the activation function that is presented further in Section 
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4.4. The prediction result was evaluated using the evaluation matrix that presented in Section 2.5. 
If the evaluation matrix satisfied the criteria the next process is determine the remaining useful life 
(RUL). The highest accuracy of the activation function according to the evaluation matrix is selected 
as the best model. 

 

Figure 5. 
A block diagram of 

prognostic method for 
RUL prediction   

4.2. Feature Extraction 

There are 5 time-domain features were used in this study i.e., RMS, variance, kurtosis, 
histogram upper and histogram lower. A detail equation of these features has been presented in 
Section 2.1 and for further reading can be found in [2]. These features were calculated daily from 
the brand-new condition of bearing until bearing final failure with a total day of 139 days. The 
example plots of each feature is presented in Figure 6a to Figure 6e. The x-axis is the bearing 
operation days continuously from brand new until final failure (139 days); and the y-axis represents  
 

Figure 6. 
Time-domain features 

of slew bearing 
vibration data in 139 

days: 
(a) Root mean square; 

(b) Variance; 
(c) Kurtosis; 

(d) Histogram upper; 
(e) Histogram lower   
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the value of each feature. The features data were processed further to obtain the degradation 
index using the formula presented in Section 2.2. For the RVFL prediction, the features data in the 
form of the degradation index were also divided into two datasets, i.e., (1) for training, and (2) for 
testing. A detail explanation is presented in Section 4.5. 

According to Figure 6a to Figure 6e, five features show a low amplitude level and low 
fluctuation from day 1 to day 90. This indicate that the raw vibration signal is still within the 
acceptable range and it is associated to the normal bearing condition. A sudden changed was 
obviously appeared at day 90 where five features show an initial peak amplitude. This condition is 
corresponded to the initial failure of the bearing condition. Moving forward from day 90, the 
features were showing the increasing amplitude level until the bearing had a final failure at 139 
days. At 139 days the bearing is totally stop due to harsh noise sound and the highest vibration 
amplitude. The bearing is then dismantled and it was found that the inner and outer race as well 
as the rollers were in harsh crack and spall condition. The picture of these condition can be found 
in [30]. 

4.3. Degradation Index 

After features were calculated, the index Degradation Index (DI) is determined and the actual 
value at the peak of the index degradation value can be obtained. Figure 7 shows the actual value 

at the peak of the index 
degradation value. The 
degradation index in Figure 7 was 
calculated using Eq. (6). The 
initial failure threshold of the 
degradation index was set to 90 
as this number is almost a half of 
the highest value of DI. Later, 
these DI values will be predicted 
using RVFL and other two 
prediction methods (Extreme 
Learning Machine (ELM) and 
Artificial Neural Network (ANN)) 
to obtained a RUL prediction. 
Table 1 is a detail values of the DI 
that will be used as a reference 
or an actual value for a RUL 
prediction and error estimation. 

4.4. Activation Functions 

In this paper, different activation functions were used to show whether the results obtained 
were significantly different or not. In this study, a ratio data 80:20 is used with 80% for training 
data and 20% for test data and activation function used. The selected activation function for this 
study are SELU, ReLU, Sigmoid, and Sine. In each activation function, 30 trials were performed to 
find the minimum RMSE. The 30 trials result of four selected activation function is presented in 
Figure 8. In general, the lower RMSE value was obtained in Figure 8a and Figure 8b for SELU and ReLU 
compare to Figure 8c and Figure 8d for Sigmoid and Sine. The average RMSE value of SELU, ReLU, 
Sigmoid, and Sine is 5.8427, 8.5513, 23.6733, and 83.801, respectively. Among 30 trials, the lowest 
RMSE was noted and used as the prediction model for RUL bearing prognostic. The lowest RMSE 
value for SELU. ReLU, Sigmoid, and Sine of 0.9598, 1.9643, 11.1054, and 48.8755, respectively. A 
general activation function comparison is presented in Table 2. For a more detail comparison 
including the optimum trial number and the evaluation metrics is presented in Table 3. In order to 
provide a comprehensive comparison for the model that used four different activation function, 
the degradation index prediction for four activation function is presented in Figure 9. 

 
Table 2.  

Activation function 
comparison (in general) 

Activation function Average of RMSE for 30 trials The lowest RMSE The highest RMSE 

SELU 5.6769 0.9598 23.3402 
ReLU 8.5515 1.9643 31.0234 

Sigmoid 23.6734 11.1054 43.7997 
Sine 83.7007 48.8755 213.977 

 

Figure 7. 
   Actual degradation 

Index based on five 
time-domain features      

  

Table 1.  
Actual degradation 

index value (calculated 
from five time-domain 

features) 

Day Degradation Index 
107 90.03 
114 110.656 
128 164.998 
131 171.632 
134 124.556 
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Table 3.  
Activation function 

comparison (for the 
lowest RMSE, MAE and 

MAPE) 

Activation function The lowest trial number The lowest RMSE The lowest MAE The lowest MAPE (%) 
SELU 25 0.9598 0.4474 0.9904 
ReLU 12 1.9643 0.9102 2.29 

Sigmoid 20 11.1054 5.4159 12.8199 
Sine 4 48.8755 26.8544 56.1383 

 

Figure 8. 
RMSE of four activation 

functions for 30 trials:  
(a) SELU;  
(b) ReLU;  

(c) Sigmoid;  
(d) Sine   

 

Figure 9. 
Degradation index 

prediction:  
(a) SELU;  
(b) ReLU;  

(c) Sigmoid;  
(d) Sine   

 
According to activation function comparison results presented in Figure 8 and Table 3, the SELU 

activation function at trial number 25 was selected as the prediction model for the degradation 
index. 

4.5. Remaining Useful Life (RUL) or RVFL method 

To determine the RUL value of the slew bearing, the best activation function is selected. 
According to the comparison of the activation functions, SELU is outperformed that other 
activation function. Then to determine the threshold value, the first time the bearing is damaged 
is used, namely on the 90th day. The threshold values obtained are as follows: 
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As presented in Figure 10, 
the peak point value on day 90 is 
161.349 (≈ 161). This value was 
used as a final failure threshold 
of the DI is determined for the 
RUL prediction of the bearing. 
This threshold indicates the level 
of the bearing condition near 
before the final failure occurred. 
Then after obtaining the 
threshold value, the threshold 
value is entered into the 
experiment using the best 
activation function. 

Figure 11 shows the RUL 
bearing prediction obtained 
from the developed model, 
RVFL. From the figure, it is 
shown that the RUL prediction 
stops on day 131 because the 
point stops above the threshold 
value. This indicates that the 
bearing will be damaged on day 
131. However, based on the 
actual data obtained, the 
bearing was damaged on day 
139. The difference obtained 
from the actual data value and 
the prediction data is 8 days. 
From this difference, the 
accuracy value of the RUL 
prediction is calculated. The 
zoom in view (the red dashed 
line) of Figure 11 is presented in 
Figure 12. 

To calculate the accuracy of 
the RUL prediction, the following 
formula is used [2]. 

𝑃𝐴 =  (1 − 
|𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑈𝐿 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑈𝐿|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑈𝐿
)  𝑥 100% (21) 

where, PA is a prediction accuracy of the RUL prediction. 
By substituting the actual and predicted RUL to Eq. (20), the RUL prediction accuracy can be 

obtained as follows: 

𝑃𝐴 =  (1 −  
|139 − 131|

139
)  𝑥 100% 

(22) 𝑃𝐴 =  (1 −  
|8|

139
)  𝑥 100% 

𝑃𝐴 =  0.9424 𝑥 100% 

𝑃𝐴 =  94.24% 

According to the above calculation, the RUL prediction accuracy of RVFL method is 94.24%. 
The RUL value obtained from the above calculation is acceptable because the accuracy value is 
above 90%. This also indicates that the model used is good enough to predict when the bearing 
will be damaged. 

The RVFL method has a lower accuracy value compared to the existing method (Kernel 
Regression), namely because the RVFL method gets random results and requires several trials to 

Figure 10. 
   Peak of degradation 

index      
  

Figure 11. 
   RVFL prediction       

  

Figure 12. 
    RUL prediction 

(zoom-in view of the 
red dashed line of 

Figure 11)       
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get maximum results. So that with random results and the selection of the best activation function, 
the accuracy obtained meets the design criteria but does not exceed or lower than the existing 
methods.  

Suggestion to improve accuracy with RVFL are changing the alpha and lambda values in the 
SELU activation function, however, this method will be time consuming because it is a trial-and-
error method. Another alternative is by combining the RVFL method with other ML methods to 
optimize the alpha and lambda values. 

4.6. Results from Extreme Learning Machine and Artificial Neural 
Network 

The following are the comparison result of the RVFL method with ELM and ANN methods. 

4.6.1. ELM Prediction 

The DI prediction result of ELM method is presented in Figure 13. Similar to the RVFL 
prediction, four DI points (day 114, 128, 131, and 134) were also predicted using ELM and it is 
shown in detail in Figure 13. It is observed that when utilizing the ELM, the highest point is reached 

on day 128. Using the RUL 
prediction accuracy shows in Eq. 
20 the prediction accuracy (PA) 
of ELM is 92.08%. This PA of ELM 
is lower than the PA of RVFL. This 
prediction indicated that the RUL 
estimation is earlier than both 
the RVFL prediction and actual 
value. Other detail comparison 
based on the DI values of the 
four days prediction (day 114, 
128, 131, and 134) is presented 
in Table 4 to Table 6. 

4.6.2. ANN (Artificial Neural Network) 

The DI prediction of four DI points (day 114, 128, 131, and 134) using ANN method is 
presented in Figure 14. Similar to ELM prediction, the highest prediction point was on day 114. This 
will result to a similar RUL prediction accuracy of 92.08%. The ANN RUL prediction also earlier than 
the RVFL RUL prediction. Other detail comparison based on the DI values of the four days 

prediction is presented in Table 4 
to Table 6. 

Table 4 presents the 
prediction accuracy of RUL for 
only the highest peak day. The 
four prediction days of DI values 
is presented in Table 5 compare 
to the actual DI value. In Table 6, 
the prediction is presented in 
percentage to inform the best 
performance out of three 
methods. 

 
Table 4.  

Comparison of RUL 
prediction using RVFL, 

ELM, and ANN 

Method Peak day Prediction Accuracy of RUL (%) 

RVFL 131 94.24 
ELM 128 92.08 
ANN 128 92.08 

 
Table 5.  

Comparison of DI level 
prediction using RVFL, 

ELM, and ANN 

Day of Predicted DI Actual DI value RVFL DI Prediction ELM DI Prediction ANN DI Prediction 
114 110.656 112.967 109.895 116.672 
128 164.998 165.32 186.643 197.263 
131 171.632 173.991 168.006 190.545 
134 124.556 123.237 134.768 154.063 

 

Figure 13. 
  ELM prediction      

Figure 14. 
  ANN prediction      
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Table 6.  
Comparison of DI level 
prediction using RVFL, 

ELM, and ANN in 
percentage 

Day of Predicted DI RVFL DI Prediction in % ELM DI Prediction in % ANN DI Prediction in % 
114 97.91 99.31 94.56 
128 99.80 86.88 80.45 
131 98.63 97.89 88.98 
134 98.94 91.80 76.31 

Average 98.82 93.97 85.07 

5. Conclusions 
The RVFL model for obtaining the RUL of bearings has met the design criteria with an accuracy 

of 94.24%. The peak value prediction obtained using RVFL with an 80:20 data ratio and the SELU 
activation function has met the design criteria with evaluation metrics of RMSE at 0.9598, MAE at 
0.4474, and MAPE at 0.9904%. Furthermore, the difference between the actual values and the 
predicted values is minimal. The recommendations provided are to modify the parameter values 
in the SELU activation function, use a larger training dataset, and combine the RVFL method with 
other ML techniques. 

As the data is limited that only used one bearing, the future works is adding a number of 
bearings as the research object and change the parameters such as applied load, rotating speed, 
and day of dust insertion. The greater number of bearings used in the bearing condition monitoring 
and prognosis research with differs operating parameters will represent closely on the actual 
condition. 
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