Main Article Content

Abstract

Turmeric rhizome (Curcuma longa L) contains the main active compound curcumin, which has antibacterial activity which inhibits Methicillin-Resistant Staphylococcus aureus (MRSA). Developing a nanoemulsion formula for turmeric rhizome extract can overcome bacterial resistance by protecting the active substance from degradation and blocking the efflux pump in bacteria. This research aims to create a nanoemulsion formulation and determine the activity of turmeric rhizome extract nanoemulsion against MRSA bacteria in vitro. Method: Turmeric rhizomes were extracted using the maceration method using 70% ethanol solvent. The technique of nanoemulsion preparation was by using the spontaneous emulsification method with varying extract concentrations of 1.25% (F1), 2.50% (F2), and 3.75% (F3). Evaluation of the physical characteristics of nanoemulsions includes particle size, polydispersity index, zeta potential, viscosity, and pH. In vitro activity test of turmeric rhizome extract nanoemulsion using the diffusion method against MRSA bacteria. The turmeric rhizome extraction process produces a yield value of 14.3%. The best formula for turmeric rhizome extract nanoemulsion is F1 with a viscosity value of 134.6 ± 21.3 Cps, pH value of 6.34, particle size value of 33.4 ± 12.8 nm, polydispersity index of 0.407 ± 0.01, zeta potential -14.2±2.9 mV. Turmeric extract nanoemulsion can inhibit the growth of Methicillin-Resistant Staphylococcus aureus bacteria with an inhibition zone of 11.00 mm at F3. Conclusion: Curcumin can be formulated in a nanoemulsion system without providing significant changes in organoleptic tests, viscosity, pH, nanoemulsion type tests, particle size, polydispersity index, and zeta potential. Turmeric extract nanoemulsion has an antibacterial effect against MRSA in vitro.

Keywords

Nanoemulsion MRSA Turmeric Rhizome

Article Details

References

  1. Alabdali, A. Y. M., Kzar, M. S., Chinnappan, S., Mani, R. R., Selvaraja, M., Wen, K. J., Sally, L., & Kuang, F. W. (2022). Application of nanoantibiotics approach against anti-bacterial resistance. International Journal of Applied Pharmaceutics, 14(3), 34–39. https://doi.org/10.22159/ijap.2022v14i3.43508
  2. Anggraini, D., Ihsan, M., Savira, M., Djojosugito, F. A., & Mardhiyah, F. (2021). Gambaran Skrining Methicillin-Resistant Staphylococcus Aureus (MRSA) Pada Pasien Ortopedi di RS X Riau. Biomedika, 13(2). https://doi.org/10.23917/biomedika.v13i2.11875
  3. Anief, M. (2019). Ilmu Meracik Obat: Teori dan Praktik. UGM Press.
  4. Budiman, H. M., Soleha, T. U., Warganegara, E., & Anggraini, D. I. (2020). Prevalensi Kolonisasi Bakteri Methicillin-Resistant Staphylococcus aureus (MRSA) di Ruang Intensive Care Unit (ICU) Rumah Sakit Umum Daerah Abdul Moeloek Bandar Lampung. Majority, 9(1), 19–23.
  5. Chamundeeswari, M., Jeslin, J., & Verma, M. L. (2019). Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 17(2), 849–865. https://doi.org/10.1007/s10311-018-00841-1
  6. Chong, W.-T., Tan, C.-P., Cheah, Y.-K., B. Lajis, A. F., Habi Mat Dian, N. L., Kanagaratnam, S., & Lai, O.-M. (2018). Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween80-Span 80 using response surface methodology. PLOS ONE, 13(8), e0202771. https://doi.org/10.1371/journal.pone.0202771
  7. Chuacharoen, T., Prasongsuk, S., & Sabliov, C. M. (2019). Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules, 24(15), 2744. https://doi.org/10.3390/molecules24152744
  8. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
  9. Depkes RI. (2017). Farmakope Herbal Indonesia (2nd ed.). Departemen Kesehatan Republik Indonesia.
  10. Dewatisari, W. F., Rumiyanti, L., & Rakhmawati, I. (2018). Rendemen dan Skrining Fitokimia pada Ekstrak Daun Sanseviera sp. Jurnal Penelitian Pertanian Terapan, 17(3), 197. https://doi.org/10.25181/jppt.v17i3.336
  11. Fukuda, K., Ito, Y., Furuichi, Y., Matsui, T., Horikawa, H., Miyano, T., Okada, T., van Logtestijn, M., Tanaka, R. J., Miyawaki, A., & Amagai, M. (2024). Three stepwise pH progressions in stratum corneum for homeostatic maintenance of the skin. Nature Communications, 15(1), 4062. https://doi.org/10.1038/s41467-024-48226-z
  12. Gupta, P. K., Pandit, J. K., Kumar, A., Swaroop, P., & Gupta, S. (2010). Pharmaceutical Nanotechnology Novel Nanoemulsion –High Energy Emulsification Preparation, Evaluation and Application. The Pharma Research, 3(3), 117–138.
  13. Hartini, M. (2016). Pengaruh Variasi Fase Minyak Virgin Coconut Oil Dan Medium-Chain Triglycerides Oil Terhadap Stabilitas Fisik Nanoemulsi Minyak Biji Delima Dengan Kombinasi Surfaktan Tween 80 Dan Span 80 [Sanata Dharma University]. https://repository.usd.ac.id/2669/
  14. Hua, Y., Li, W., Cheng, Z., Zhao, Z., Yin, X., Li, Y., Sun, J., Gao, J., Zhang, H., & Zheng, A. (2018). Solidification of Nanostructured Lipid Carriers Loaded Testosterone Undecanoate: In Vivo and In Vitro Study. Drug Research, 68(08), 457–464. https://doi.org/10.1055/a-0573-9132
  15. Jiang, L., Lee, H. W., & Loo, S. C. J. (2020). Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Advances, 10(14), 8497–8517. https://doi.org/10.1039/C9RA10921H
  16. Kaur, R., & Ajitha, M. (2019). Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. European Journal of Pharmaceutical Sciences, 136, 104956. https://doi.org/10.1016/j.ejps.2019.104956
  17. Kharat, M., Du, Z., Zhang, G., & McClements, D. J. (2017). Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. Journal of Agricultural and Food Chemistry, 65(8), 1525–1532. https://doi.org/10.1021/acs.jafc.6b04815
  18. Kurniawan, Tyas, E. A., & Supriyadi. (2021). Prevalensi Bakteri Methicillin-Resistant Staphylococcus aureus (MRSA) Pada Peralatan Laboratorium. The Journal of Muhammadiyah Medical Laboratory Technologist, 4(2), 188. https://doi.org/10.30651/jmlt.v4i2.7554
  19. Mun, S.-H., Joung, D.-K., Kim, Y.-S., Kang, O.-H., Kim, S.-B., Seo, Y.-S., Kim, Y.-C., Lee, D.-S., Shin, D.-W., Kweon, K.-T., & Kwon, D.-Y. (2013). Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 20(8–9), 714–718. https://doi.org/10.1016/j.phymed.2013.02.006
  20. Nejadmansouri, M., Hosseini, S. M. H., Niakosari, M., Yousefi, G. H., & Golmakani, M. T. (2016). Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 821–832. https://doi.org/10.1016/j.colsurfa.2016.07.075
  21. O’Sullivan, J. J., Park, M., Beevers, J., Greenwood, R. W., & Norton, I. T. (2017). Applications of ultrasound for the functional modification of proteins and nanoemulsion formation: A review. Food Hydrocolloids, 71, 299–310. https://doi.org/10.1016/j.foodhyd.2016.12.037
  22. Octaviani, I., Kasasiah, A., & Sholih, M. G. (2022). Cemaran Bakteri Staphylococcus aureus dan Pseudomonas aeruginosa pada Masker Organik. Jurnal Tunas-Tunas Riset Kesehatan, 12(3). https://doi.org/10.33846/2trik12311
  23. Pangemanan, A., Fatimawali, & Budiarso, F. (2016). Uji daya hambat ekstrak rimpang kunyit (Curcuma longa) terhadap pertumbuhan bakteri Staphylococcus aureus dan Pseudomonas sp. EBiomedik, 4(1). https://doi.org/10.35790/ebm.v4i1.10840
  24. Pasaribu, D. M. R. (2024). Methicillin Resistant Staphylococcus aureus Isolation on Door Handles at X Building in Jakarta. Jurnal MedScientiae, 3(1). https://doi.org/10.36452/JMedScientiae.v3i1.3062
  25. Prakash, A., Baskaran, R., Paramasivam, N., & Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523. https://doi.org/10.1016/j.foodres.2018.05.066
  26. Ramadhani, P., Erly, E., & Asterina, A. (2018). Hambat Ekstrak Etanol Rimpang Kunyit (Curcuma domestica V.) terhadap Pertumbuhan Bakteri Staphylococcus aureus Secara In Vitro. Jurnal Kesehatan Andalas, 6(3), 590. https://doi.org/10.25077/jka.v6i3.743
  27. Saifullah, M., Ahsan, A., & Shishir, M. R. I. (2016). Production, stability and application of micro- and nanoemulsion in food production and the food processing industry. In Emulsions (pp. 405–442). Elsevier. https://doi.org/10.1016/B978-0-12-804306-6.00012-X
  28. Salsabil, A. D., Rochmanti, M., & Dwi Wahyu Widodo, A. (2021). Vancomycin Monotherapy vs Alternative Antibiotics for MRSA Patients: A Systematic Review. International Journal of Research Publications, 92(1). https://doi.org/10.47119/IJRP100921120222689
  29. Sari, N. I., Diharmi, A., Sidauruk, S. W., & Sinurat, F. M. (2022). Identifikasi Komponen Bioaktif dan Aktivitas Ekstrak Rumput Laut Merah (Eucheuma spinosum). Jurnal Teknologi Dan Industri Pertanian Indonesia, 14(1), 9–15. https://doi.org/10.17969/jtipi.v14i1.18862
  30. Subagia, I. K., Januarta, I. G. A., Arisanti, C. I. S., & Samirana, P. O. (2019). Optimasi Konsentrasi Pulvis Gummi Arabicum (PGA) sebagai Emulgator Formulasi Emulsi Ekstrak Rimpang Kunyit (Curcuma longa). Jurnal Farmasi Udayana, 8(1), 22–28. https://doi.org/10.24843/JFU.2019.v08.i01.p04
  31. Teow, S.-Y., & Ali, S. A. (2015). Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pakistan Journal of Pharmaceutical Sciences, 28(6), 2109–2114. http://www.ncbi.nlm.nih.gov/pubmed/26639480
  32. Wildana, Sennang, N., & Rusli, B. (2018). Resistensi terhadap methicillin (methicillin resistant) staphylococcus aureus di Instalasi Rawat Inap. Indonesian Journal of Clinical Pathology and Medical Laboratory, 17(1), 5–8. https://doi.org/10.24293/ijcpml.v17i1.1047
  33. Wong, J. W., Ip, M., Tang, A., Wei, V. W., Wong, S., Riley, S., Read, J., & Kwok, K. O. (2018). Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: a systematic review and meta-analysis. Clinical Epidemiology, Volume 10, 1489–1501. https://doi.org/10.2147/CLEP.S160595