Main Article Content

Abstract

The study of the efficacy of Acmella oleracea (L.) flowers on breast cancer is still in its early stages. The molecular interaction mechanisms underlying Acmella oleracea's anti-breast cancer activity will be elucidated using in-silico analysis. For this study, seventeen bioactive compounds were used: spilanthol, alpha- and beta-amyrin ester, stigmasterol, beta-sitosterol, alpha-1-sitosterol, 3-acetylaleuritic acid, scopoletin, vanillic acid, trans-ferulic, (72,9E)-2-oxo-undeca-7,9-dienyl 3-methylbut-2-enoate, beta-caryophyllene, beta-pinene, myrcene, caryophyllene oxide, and limone Canonical smiles were obtained from PubChem and inserted into the PASS server to determine biological activity. Several compounds were docked with protein targets, such as ESR1, MAP2K2, and PGR. We used Pyrx 0.8 software for anchoring molecular interaction and Discovery Studio software to visualize the complex binding. In terms of Antineoplastic, apoptosis agonist, caspase-3, caspase-8 stimulant, ovulation inhibitor, steroid synthesis inhibitor, and TP53 expression enhancer, all the compounds tested positive for anticancer activity. According to Swiss ADME and protox analysis, Acmella oleracea flowers have the potential to modulate apoptosis and cell growth. More research is required to confirm the role of Acmella oleracea bioactive compounds in developing target cancers. The study reveals that Acmella oleracea has numerous bioactive chemicals advantageous for cancer therapy by inducing apoptosis through interaction with ESR1, MAPK2, and PGR protein.

Keywords

Acmella oleracea Anti-cancer Breast cancer Bioactive compounds

Article Details

References

  1. Bae, H., Song, G., & Lim, W. (2020). Stigmasterol Causes Ovarian Cancer Cell Apoptosis by Inducing Endoplasmic Reticulum and Mitochondrial Dysfunction. Pharmaceutics, 12(6). https://doi.org/10.3390/Pharmaceutics12060488
  2. Bellumori, M., Zonfrillo, B., Maggini, V., Bogani, P., Gallo, E., Firenzuoli, F., Mulinacci, N., & Innocenti, M. (2022). Acmella oleracea (L.) R.K. Jansen: Alkylamides and phenolic compounds in aerial parts and roots of in vitro seedlings. Journal of Pharmaceutical and Biomedical Analysis, 220, 114991. https://doi.org/10.1016/J.JPBA.2022.114991
  3. Benelli, G., Pavela, R., Drenaggi, E., & Maggi, F. (2019). Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. Journal of Ethnopharmacology, 229, 272–279. https://doi.org/10.1016/J.JEP.2018.08.030
  4. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7. https://doi.org/10.1038/srep42717
  5. De Albuquerque Barros, G., & Henrique Morgon, N. (2022). Finding reliable methodology for optical rotation and correct predictions of (s)‐methyloxirane and (1R,5R)‐β‐pinene. Chirality, 34(9), 1197–1208. https://doi.org/10.1002/CHIR.23479
  6. Greger, H. (2016). Alkamides: a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. In Phytochemistry Reviews (Vol. 15, Issue 5, pp. 729–770). Springer Netherlands. https://doi.org/10.1007/s11101-015-9418-0
  7. Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. Al, Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Https://Doi.Org/10.1080/07391102.2020.1761883, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  8. Johnson, R. H., Anders, C. K., Litton, J. K., Ruddy, K. J., & Bleyer, A. (2018). Breast Cancer in Adolescents and Young Adults. Pediatric Blood & Cancer, 65(12), e27397. https://doi.org/10.1002/PBC.27397
  9. Kang, E., Lee, D. H., Jung, Y. J., Shin, S. Y., Koh, D., & Lee, Y. H. (2016). α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Applied Biological Chemistry, 59(4), 511–516. https://doi.org/10.1007/S13765-016-0175-6.
  10. Khan, M. Z. I., Uzair, M., Nazli, A., & Chen, J. Z. (2022). An overview on Estrogen receptors signaling and its ligands in breast cancer. European Journal of Medicinal Chemistry, 241, 114658. https://doi.org/10.1016/J.EJMECH.2022.114658.
  11. Kolatorova, L., Vitku, J., Suchopar, J., Hill, M. and Parizek, A., 2022. Progesterone: a steroid with wide range of effects in physiology as well as human medicine. International Journal of Molecular Sciences, 23(14), p.7989.
  12. Lalthanpuii, P. B., Lalruatfela, B., Vanlaldinpuia, K., Lalremsanga, H. T., & Lalchhandama, K. (2018). Antioxidant and cytotoxic properties of acmella oleracea. Medicinal Plants, 10(4), 353–358. https://doi.org/10.5958/0975-6892.2018.00051.5
  13. Perdana Istyastono, E. (2015). Uji In Silico Senyawa Emodin Sebagai Ligan Pada Reseptor Estrogen Alfa. Jurnal Farmasi Sains dan Komunitas (Journal of Pharmaceutical Sciences and Community),12(D), 48–53.
  14. Poirier, A. A., Côté, M., Bourque, M., Jarras, H., Lamontagne-Proulx, J., Morissette, M., Paolo, T. di, & Soulet, D. (2022). Differential contribution of estrogen receptors to the intestinal therapeutic effects of 17β-estradiol in a murine model of Parkinson’s disease. Brain Research Bulletin, 187, 85–97. https://doi.org/10.1016/J.BRAINRESBULL.2022.06.019
  15. Pu, H., Wen, X., Luo, D., & Guo, Z. (2022). Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. The Journal of Steroid Biochemistry and Molecular Biology, 106199. https://doi.org/10.1016/J.JSBMB.2022.106199
  16. Rahim, R. A., Jayusman, P. A., Muhammad, N., Mohamed, N., Lim, V., Ahmad, N. H., Mohamad, S., Hamid, Z. A. A., Ahmad, F., Mokhtar, N., Shuid, A. N., & Mohamed, I. N. (2021). Potential antioxidant and anti-inflammatory effects of spilanthes acmella and its health beneficial effects: A review. International Journal of Environmental Research and Public Health, 18(7), 3532. https://doi.org/10.3390/IJERPH18073532/S1
  17. Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X., Kalyana-Sundaram, S., Wang, R., Ning, Y., Hodges, L., Gursky, A., Siddiqui, J., Tomlins, S. A., Roychowdhury, S., Pienta, K. J., Kim, S. Y., Roberts, J. S., Rae, J. M., van Poznak, C. H., Chinnaiyan, A. M. (2013). Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nature Genetics, 45(12), 1446–1451. https://doi.org/10.1038/NG.2823
  18. Sharma, R., & Arumugam, N. (2021). N-alkylamides of Spilanthes (syn: Acmella): Structure, purification, characterization, biological activities and applications – a review. Future Foods, 3, 100022. https://doi.org/10.1016/J.FUFO.2021.100022
  19. Siao, A. C., Hou, C. W., Kao, Y. H., & Jeng, K. C. (2015). Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells. Asian Pacific Journal of Cancer Prevention: APJCP, 16(9), 3779–3783. https://doi.org/10.7314/APJCP.2015.16.9.3779
  20. Suryani, Y. (2018). In Silico Analysis of Formononetin Compound as a Breast Anti Cancer. Latin American Society of Hypertensiea. https://www.redalyc.org/journal/1702/170263777014/html/
  21. Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature 2019 575:7782, 575(7782), 299–309. https://doi.org/10.1038/s41586-019-1730-1
  22. Wang, W.-L., Chen, S.-M., Lee, Y.-C., & Chang, W.-W. (2022). Stigmasterol inhibits cancer stem cell activity in endometrial cancer by repressing IGF1R/mTOR/AKT pathway. Journal of Functional Foods, 99, 105338. https://doi.org/10.1016/J.JFF.2022.105338
  23. Wijaya, C. A., & Muchtaridi, M. (2017). Pengobatan Kanker Melalui Metode Gen Terapi. Farmaka, 15 (Farmaka), 53–68.
  24. Zang, X., Zhang, Z., Zhao, Y., Li, G., Xie, H., Zhang, W., Wu, G., Yang, X., & Jiang, L. (2022). Effects of NO2 and SO2 on the secondary organic aerosol formation from beta-pinene photooxidation. Journal of Environmental Sciences. https://doi.org/10.1016/J.JES.2022.10.040