Main Article Content

Abstract

Immunotherapy is a promising cancer treatment that enhances the body's immune system by targeting immune checkpoint receptors. One of these receptors, CTLA-4, suppresses the activity of T lymphocytes. Several active compounds derived from herbs, including astragaloside IV, flindersine, n-butylidenephthalide, and xanthorrhizol, have demonstrated potential in anticancer immunotherapy. The objective of this study is to investigate the interaction between these active compounds and the CTLA-4 receptor using molecular docking simulation. This experimental research was conducted from January – June 2023 in the pharmaceutical chemistry laboratory at Al-Irsyad Cilacap University with methods including ligand and receptor preparation, blind molecular docking, RMSD validation, and visualization of the structure. Our findings indicate that all four active compounds can interact with the CTLA-4 receptor and inhibit it with bond energies of astragaloside IV -7.3, flindersine -5.7, n-butylidenephthalide -5.0, and xanthorrhizol -4.9, at RMSD 0. However, the interaction does not involve the same amino acid residues as the comparator ligand ipilimumab due to differences in bond area.

Keywords

Immunotherapeutic herbal active compounds CTLA-4 in-silico

Article Details

References

  1. Alfathin, M. F., Herawati, D., & Faqih, T. M. (2021). Studi In Silico Senyawa Turunan Ftalosianin terhadap Reseptor InhA pada Mycobacterium tuberculosis sebagai Kandidat Senyawa Photosensitizer. Prosiding Farmasi, 7(2), 284–291. http://dx.doi.org/10.29313/.v0i0.28107
  2. Amalina, N. D., Suzery, M., Cahyono, B., & Bima, D. N. (2020). Mengungkap Potensi Metabolit Sekunder Tanaman Herbal Indonesia untuk Menghentikan Metastasis Kanker Payudara: Pendekatan in-silico. Indonesian Journal of Chemical Science, 9(3), 155–159.
  3. Banerjee, S., Nau, S., Hochwald, S. N., Xie, H., & Zhang, J. (2023). Anticancer properties and mechanisms of botanical derivatives. Phytomedicine Plus, 3(1), 100396. https://doi.org/10.1016/j.phyplu.2022.100396
  4. Biorad. (2015). The Role of Immune Checkpoints in Immunity and Cancer. Bio-Rad Laboraories, 80, 1–8.
  5. Destiawan, R. A., Wijaya, A. F., Arif, M. E., & Rahmawati, S. E. (2021). Regulasi Reseptor Cytotoxic T Lymphocyte Associated Protein 4 Limfosit T Terhadap Kanker dan Autoimun: Literature Review. Jurnal Biosains Pascasarjana, 23(2), 49. https://doi.org/10.20473/jbp.v23i2.2021.49-54
  6. Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9(NOV). https://doi.org/10.3389/fphar.2018.01300
  7. Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. https://doi.org/10.1007/s40484-019-0172-y
  8. Gómez-Jeria, J.-S., Robles-Navarro, A., Kpotin, G., Gómez-Jeria, J. S., Kpotin, G. A., Garrido-Sáez, N., & Gatica-Díaz, N. (2020). Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. Chemistry Research Journal, 5(2), 32–52.
  9. Harir, F. (2022). Docking Senyawa Heparin 2S dan 2SNS 2-12 Sakarida Konformasi IDS 4C1 pada Kompleks Protein FGF2-FGFR1 sebagai Antikanker menggunakan Autodock. In Universitas islam Negeri Maulana Malik Ibrahim Malang.
  10. Hasan, A. E. Z., Safithri, M., Huda, A. S., & Kurniasih, R. (2022). In Silico, To Determine the Active Compounds of Black Tea and Turmeric in Increasing the Activity of the Enzyme Sod. Indonesian Journal of Applied Research (IJAR), 3(1), 32–45. https://doi.org/10.30997/ijar.v3i1.187
  11. Jacob, J. B., Jacob, M. K., & Parajuli, P. (2021). Review of immune checkpoint inhibitors in immuno-oncology. In Advances in Pharmacology (1st ed., Vol. 91). Elsevier Inc. https://doi.org/10.1016/bs.apha.2021.01.002
  12. Kusnul, Z. (2019). Prediksi Interaksi Molekular CAPE dengan IL-2, CD25, IL-10, CTLA-4, IDO, TGFβ, and CCL2 dengan Software Docking Molekuler. SAINTEKBU: Jurnal Sains Dan Teknologi, 11(1), 12–19.
  13. Lawrenti, H. (2018). Perkembangan Imunoterapi untuk Kanker. Cermin Dunia Kedokteran, 45(8), 616–622. http://www.cdkjournal.com/index.php/CDK/article/download/634/405
  14. Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  15. Nursanti, O., Wardani, I., & Hadisoebroto, G. (2022). Validasi Penambatan Molekuler (Docking) (Zingiber Officinale) dan (Cymbopogon citratus) Sebagai Ligan Aktif Reseptor Pparγ. Jurnal Farmasi Higea, 14(1), 79. https://doi.org/10.52689/higea.v14i1.469
  16. Ong, K. S., Lim, Z. S., & Setiawan, B. (2018). Cancer Immunotherapy and CAR T Cells. CDK-271, 45(12), 909–915. https://doi.org/10.18585/inabj.v10i3.635
  17. Purwanto, D. S., Susanti, H., & Sugihartini, N. (2021). Docking Molekuler Potensi Anti Inflamasi Quersetin Daun Kelor (Moringa oleifera L.) dengan Autodock-Vina. Jurnal Ilmiah Manusia Dan Kesehatan, 4(2), 309–313. http://jurnal.umpar.ac.id/index.php/makes
  18. Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. (2019). Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 18(3), 175–196. https://doi.org/10.1038/s41573-018-0006-z
  19. Rollando. (2017). Kimia Medisinal.
  20. Rukmono, R., Fajriaty, I., Riza, H., & Handini, M. (2019). Virtual Screening Metabolit Aktif Senyawa Asam dari Pacar Air (Impatiens balsamina L.) terhadap Reseptor Sulfonilurea. Jurnal Mahasiswa Farmasi Fakultas Kedokteran UNTAN, 4(1). https://jurnal.untan.ac.id/index.php/jmfarmasi/article/view/35293
  21. Saputri, R. D., Tjahjandarie, T. S., Tanjung, M., Products, N., Division, O. C., & Airlangga, U. (2018). Alkaloid Kuinolin dari Melicope denhamii dan Uji Aktivitas Antikankernya. Jurnal Sains Dan Kesehatan, 1(9), 505–509. https://doi.org/10.25026/jsk.v1i9.61
  22. Sari, I. W., Junaidin, J., & Pratiwi, D. (2020). Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon stamineus B.) Pada Reseptor α-Glukosidase Sebagai Antidiabetes Tipe 2. Jurnal Farmagazine, 7(2), 54. https://doi.org/10.47653/farm.v7i2.194
  23. Schottel, B. L., Chifotides, H. T., & Dunbar, K. R. (2008). Anion-Π interactions. Chemical Society Reviews, 37(1), 68–83. https://doi.org/10.1039/b614208g
  24. Sinurat, M. R., Rahmayanti, Y., & Rizarullah*, R. (2021). Uji Aktivitas Antidiabetes Senyawa Baru Daun Yakon (Smallanthus sonchifolius) sebagai Inhibitor Enzim DPP-4: Studi in Silico. Jurnal IPA & Pembelajaran IPA, 5(2), 138–150. https://doi.org/10.24815/jipi.v5i2.20068
  25. Siswandono, S. (2016). Kimia Medisinal 1, Edisi Kedua. Airlangga University Press.
  26. Sobhani, N., Tardiel-cyril, D. R., Davtyan, A., Generali, D., & Roudi, R. (2021). CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 13(1440), 1–18.
  27. Sugawara, K., Iwai, M., Ito, H., Tanaka, M., Seto, Y., & Todo, T. (2021). Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Molecular Therapy - Oncolytics, 22, 129–142. https://doi.org/10.1016/j.omto.2021.05.004
  28. Usama, M. M., Mir, T. M., Fida, A. M., & Mohsin, S. U. M. (2019). Ipilimumab-Induced Hypophysitis. American Journal of Therapeutics, 2, 1–2.
  29. Waidyasooriya, H. M., Hariyama, M., & Kasahara, K. (2017). An FPGA accelerator for molecular dynamics simulation using OpenCL. International Journal of Networked and Distributed Computing, 5(1), 52–61. https://doi.org/10.2991/ijndc.2017.5.1.6
  30. Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5
  31. Yan, Y., Tao, H., He, J., & Huang, S. Y. (2020). The HDOCK server for integrated protein–protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x