Main Article Content


This study analyzes the tribological properties of 5W-30 synthetic oil with the addition of surfactants and oxide nanomaterials. This research used SAE 5W-30 lubricant base material with the addition of Aluminum Oxide (Al2O3), Titanium Dioxide (TiO2), and Hybrid Aluminum Oxide (Al2O3) - Titanium Dioxide (TiO2) nanomaterials. The nano lubricants were synthesized using a two-step method by adding nanomaterials by 0.05% volume fraction, followed by 50 ml of 5W-30 synthetic oil and polyvinylpyrrolidone (PVP) surfactant by 0.1%. Then, it was stirred using a magnetic stirrer for 20 minutes, followed by an ultrasonic homogenizer process for 30 minutes. Further, the nanolubricant was tested to identify its thermophysical properties, including density, dynamic viscosity, and sedimentation. It also underwent tribological testing, including wear, coefficient of friction, and surface roughness. Further, the nanomaterial was characterized using SEM, XRD, and FTIR. The morphological analysis using SEM suggested an irregular shape of the Al2O3 nanomaterial surface, while TiO2 has a spherical shape. Besides, phase identification with XRD testing showed corundum and anatase phases. Functional group analysis through the FTIR showedthe presence of Ti-O and Al-O. The highest density and viscosity results without surfactants were obtained in hybrid nanolubricant 779 kg/mm3 and 0.0579 Pa.s, while the use of surfactants resulted in 788.89 kg/mm3 of density and 0.0695 Pa.sviscosity. Tribological gray cast iron FC25 results in the best COF value observed in SAE 5W-30 + PVP-TiO2 lubrication (0.093). The lowest wear mass without surfactant was obtained in the Al2O3-TiO2 nanolubricant hybrid (0.02 grams), the lowest surface roughness in a mixture of PVP and TiO2 surfactants was 0.743 μm. Meanwhile, the surface morphology of gray cast iron FC25 with hybrid nanolubricant SAE 5W-30 (Al2O3-TiO2) and Nanolubricant SAE 5W-30+ (PVP-TiO2) produced the smoothest surface.


Oil 5W-30 Al2O3 TiO2 Surfactant Nanolubricant Tribology

Article Details


  1. M. Rifal, “Pengaruh Campuran Bahan Bakar Ethanol Bensin terhadap Konsumsi Bahan Bakar dan Emisi Gas Buang pada Kendaraan Bermotor 125 CC Sistem Injeksi,” Gorontalo Journal of Infrastructure and Science Engineering, vol. 4, no. 2, pp. 50–57, 2022, doi: 10.32662/gojise.v4i2.2035.
  2. A. F. Firmansyah, A. I. Gunawan, I. A. Sulistijono, and D. Hanurawan, “Pengukuran Nilai Densitas pada Minyak Pelumas Sepeda Motor dengan Gelombang Ultrasonik,” Jurnal Rekayasa Elektrika, vol. 18, no. 1, 2022, doi: 10.17529/jre.v18i1.24919.
  3. M. Salafudin, D. Darmanto, and T. Priangkoso, “Analisis pengaruh viskositas pelumas multi grade terhadap karakter pelumas,” Majalah Ilmiah Momentum, vol. 16, no. 1, 2020, doi: 10.36499/jim.v16i1.3347.
  4. S. Marsela, E. W. Fridayanthie, M. Safitri, and F. Faridi, “Sistem Pendukung Keputusan Pemilihan Oli Mesin Yamaha Mio,” Jurnal Khatulistiwa Informatika, vol. 7, no. 2, 2019, doi: 10.31294/jki.v7i2.6478.
  5. T. A. Sianturi, “Pengaruh Jenis Oli Terhadap Konsumsi Bahan Bakar pada Kenderaan Roda Dua 125 CC,” Jurnal Darma Agung, vol. 27, no. 1, pp. 863–870, 2019, doi: 10.46930/ojsuda.v27i1.142.
  6. S. B. Mousavi and S. Z. Heris, “Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 23603–23614, 2020, doi: 10.1016/j.ijhydene.2020.05.259.
  7. H. Wu et al., “Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures,” Wear, vol. 426, pp. 792–804, 2019, doi: 10.1016/j.wear.2018.11.023.
  8. J. Lei, Z. Luo, S. Qing, X. Huang, and F. Li, “Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids,” Powder Technology, vol. 399, p. 117197, 2022, doi: 10.1016/j.powtec.2022.117197.
  9. A. Bajili, D. Dahlan, and A. A. Umar, “Sintesis Nanopartikel Titanium Dioksida Didoping Rhutenium,” Jurnal Ilmu Fisika, vol. 8, no. 2, pp. 54–59, 2016, doi: 10.25077/jif.8.2.54-59.2016.
  10. W. K. Shafi and M. S. Charoo, “An overall review on the tribological, thermal and rheological properties of nanolubricants,” Tribology-Materials, Surfaces & Interfaces, vol. 15, no. 1, pp. 20–54, 2021, doi: 10.1080/17515831.2020.1785233.
  11. W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” Journal of nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/435873.
  12. Y. Jazaa, T. Lan, S. Padalkar, and S. Sundararajan, “The effect of agglomeration reduction on the tribological behavior of WS2 and MoS2 nanoparticle additives in the boundary lubrication regime,” Lubricants, vol. 6, no. 4, p. 106, 2018, doi: 10.3390/lubricants6040106.
  13. T. Mu, S. Leng, W. Tang, N. Shi, G. Wang, and J. Yang, “High-Performance and Low-Cost Membranes Based on Poly (vinylpyrrolidone) and Cardo-Poly (etherketone) Blends for Vanadium Redox Flow Battery Applications,” Batteries, vol. 8, no. 11, p. 230, 2022, doi: 10.3390/batteries8110230.
  14. S. K. Sharma, D. S. Verma, L. U. Khan, S. Kumar, and S. B. Khan, Handbook of materials characterization. Springer, 2018.
  15. J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” in Materials characterization using nondestructive evaluation (NDE) methods, Elsevier, 2016, pp. 81–124.
  16. K. E. Ramohlola, E. I. Iwuoha, M. J. Hato, and K. D. Modibane, “Instrumental techniques for characterization of molybdenum disulphide nanostructures,” Journal of Analytical Methods in Chemistry, vol. 2020, 2020, doi: 10.1155/2020/8896698.
  17. A. Kotia, P. Rajkhowa, G. S. Rao, and S. K. Ghosh, “Thermophysical and tribological properties of nanolubricants: A review,” Heat and mass transfer, vol. 54, pp. 3493–3508, 2018, doi: 10.1007/s00231-018-2351-1.
  18. H. Budiarto and A. Adiwarna, “Pengaruh Konsentrasi Gliserin Terhadap Viskositas Dari Pembuatan Pasta Gigi Cangkang Kerang Darah,” Jurnal Konversi, vol. 2, no. 1, 2013, doi: 10.24853/konversi.2.1.%25p.
  19. J. Zhao, Y. Huang, Y. He, and Y. Shi, “Nanolubricant additives: A review,” Friction, vol. 9, pp. 891–917, 2021, doi: 10.1007/s40544-020-0450-8.
  20. P. P. Patil, Y. Gori, A. Kumar, and M. R. Tyagi, “Experimental analysis of tribological properties of polyisobutylene thickened oil in lubricated contacts,” Tribology International, vol. 159, p. 106983, 2021, doi: 10.1016/j.triboint.2021.106983.
  21. J. Salguero, J. M. Vazquez-Martinez, I. Del Sol, and M. Batista, “Application of pin-on-disc techniques for the study of tribological interferences in the dry machining of A92024-T3 (Al–Cu) alloys,” Materials, vol. 11, no. 7, p. 1236, 2018, doi: 10.3390/ma11071236.
  22. D. Gasni, K. M. A. Razak, A. Ridwan, and M. Arif, “Pengaruh Penambahan Minyak Kelapa dan Sawit Terhadap Sifat Fisik dan Tribologi Pelumas SAE 40,” Jurnal METTEK Volume, vol. 5, no. 1, pp. 1–9, 2019, doi: 10.24843/METTEK.2019.v05.i01.p01.
  23. D. Z. Segu and P. Hwang, “Friction control by multi-shape textured surface under pin-on-disc test,” Tribology International, vol. 91, pp. 111–117, 2015, doi: 10.1016/j.triboint.2015.06.028.
  24. N. E. Wahyuningtiyas and H. Suryanto, “Analysis of biodegradation of bioplastics made of cassava starch,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 1, no. 1, pp. 24–31, 2017, doi: 10.17977/um016v1i12017p024.
  25. P. Puspitasari, M. A. Iftiharsa, H. F. N. Zhorifah, and R. W. Gayatri, “Analysis of physical properties and compressibility of avian eggshell nanopowders in solid state reaction,” EUREKA: Physics and Engineering, vol. 5, pp. 110–120, 2021, doi: 10.21303/2461-4262.2021.001670.
  26. N. S. Yüzbasi et al., “Removal of MS2 and fr bacteriophages using MgAl2O4-modified, Al2O3-stabilized porous ceramic granules for drinking water treatment,” Membranes, vol. 12, no. 5, p. 471, 2022, doi: 10.3390/membranes12050471.
  27. N. Nasution and A. Fitri, “Synthesis of Rutile TIO2 Nanoparticles by Co-precipitation Method,” Fisitek: Jurnal Ilmu Fisika dan Teknologi, vol. 2, no. 2, 2018, doi: 10.30821/fisitek.v2i2.1808.
  28. P. Puspitasari, M. Chairil, S. Sukarni, and N. S. W. Supriyanto, “Physical properties and compressibility of quail eggshell nanopowder with heat treatment temperature variations,” Materials Research Express, vol. 8, no. 5, p. 55008, 2021, doi: 10.1088/2053-1591/ac0266.
  29. K. A. Bokhary, F. Maqsood, M. Amina, A. Aldarwesh, H. K. Mofty, and H. M. Al-Yousef, “Grapefruit extract-mediated fabrication of photosensitive aluminum oxide nanoparticle and their antioxidant and anti-inflammatory potential,” Nanomaterials, vol. 12, no. 11, p. 1885, 2022, doi: 10.3390/nano12111885.
  30. P. Puspitasari and D. D. Pramono, “Phase Identification, Morphology, and Compressibility of Scallop Shell Powder (Amusium Pleuronectes) for Bone Implant Materials,” in Nanotechnologies in Green Chemistry and Environmental Sustainability, CRC Press, 2022, pp. 5–25.
  31. D. D. Pramono, P. Puspitasari, A. A. Permanasari, S. Sukarni, and A. Wahyudiono, “Effect of sintering time on porosity and compressibility of calcium carbonate from Amusium pleuronectes (scallop shell),” in AIP Conference Proceedings, 2023, vol. 2687, no. 1, doi: 10.1063/5.0120990.
  32. G. A. Nowsherwan et al., “Preparation and Numerical Optimization of TiO2: CdS Thin Films in Double Perovskite Solar Cell,” Energies, vol. 16, no. 2, p. 900, 2023, doi: 10.3390/en16020900.
  33. J. Maulana, H. Suryanto, and A. Aminnudin, “Effect of graphene addition on bacterial cellulose-based nanocomposite,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 6, no. 2, pp. 107–116, 2022, doi: 10.17977/um016v6i22022p107.
  34. E. A. Arafat et al., “Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts (Locusta migratoria) as an Ecotoxicological Model,” Antioxidants, vol. 12, no. 3, p. 653, 2023, doi: 10.3390/antiox12030653.
  35. X. Liang et al., “Preparation of Anticorrosive Epoxy Nanocomposite Coating Modified by Polyethyleneimine Nano-Alumina,” Coatings, vol. 13, no. 3, p. 561, 2023, doi: 10.3390/coatings13030561.
  36. D. Domyati, “Chemical and thermal study of metal chalcogenides (zinc sulfide), aluminum oxide, and graphene oxide based nanocomposites for wastewater treatment,” Ceramics International, vol. 49, no. 1, pp. 1464–1472, 2023, doi: 10.1016/j.ceramint.2022.09.190.
  37. M. Bartoszewska, E. Adamska, A. Kowalska, and B. Grobelna, “Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles,” Molecules, vol. 28, no. 2, p. 645, 2023, doi: 10.3390/molecules28020645.
  38. M. N. Nduni, A. M. Osano, and B. Chaka, “Synthesis and characterization of aluminium oxide nanoparticles from waste aluminium foil and potential application in aluminium-ion cell,” Cleaner Engineering and Technology, vol. 3, p. 100108, 2021, doi: 10.1016/j.clet.2021.100108.
  39. S. Q. Wang, W. B. Liu, P. Fu, and W. L. Cheng, “Enhanced photoactivity of N-doped TiO 2 for Cr (VI) removal: Influencing factors and mechanism,” Korean Journal of Chemical Engineering, vol. 34, pp. 1584–1590, 2017, doi: 10.1007/s11814-017-0003-7.
  40. A. Piątkowska, M. Janus, K. Szymański, and S. Mozia, “C-, N-and S-doped TiO2 photocatalysts: a review,” Catalysts, vol. 11, no. 1, p. 144, 2021, doi: 10.3390/catal11010144.
  41. D. Heltina, U. Avisa, and M. I. Fermi, “The role of surfactant to enhance photocatalyst performance on phenol degradation in TiO2-CNT composite-modified CNT (Cetyltrimethylammonium bromide),” in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1041, no. 1, p. 12048, doi: 10.1088/1757-899X/1041/1/012048.
  42. C. S. Wiguna, H. Suryanto, A. Aminnudin, J. S. Binoj, and A. Ali, “Effect of Grafting Nano-TiO2 on Sansevieria Cylindrica Fiber Properties,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 1, pp. 10–19, 2023, doi: 10.17977/um016v7i12023010.
  43. M. R. Purwanto, P. Puspitasari, A. A. Permanasari, and M. Abdullah, “Investigation of Thermophysical and Rheological Properties of Scallop Shell Powder/SAE 5w-30 Nanolubricant,” Transmisi, vol. 19, no. 1, pp. 30–36, 2023, doi: 10.26905/jtmt.v19i1.9638.
  44. M. F. Nabil, W. H. Azmi, K. A. Hamid, N. N. M. Zawawi, G. Priyandoko, and R. Mamat, “Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance,” International Communications in Heat and Mass Transfer, vol. 83, pp. 30–39, 2017, doi: 10.1016/j.icheatmasstransfer.2017.03.008.
  45. C. Birleanu, M. Pustan, M. Cioaza, A. Molea, F. Popa, and G. Contiu, “Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: an experimental investigation,” Scientific Reports, vol. 12, no. 1, p. 5201, 2022, doi: 10.1038/s41598-022-09245-2.
  46. M. K. A. Ali and H. Xianjun, “Improving the heat transfer capability and thermal stability of vehicle engine oils using Al2O3/TiO2 nanomaterials,” Powder Technology, vol. 363, pp. 48–58, 2020, doi: 10.1016/j.powtec.2019.12.051.
  47. P. Puspitasari, S. B. Khoyroh, A. A. Permanasari, M. M. A. Pratama, and S. A. A. Karim, “Analysis of the Thermophysical Properties of SAE 5W-30 Lubricants with the Addition of Al2O3, TiO2, and Hybrid Al2O3-TiO2 Nanomaterials on the Performance of Motorcycles,” in Nanotechnologies in Green Chemistry and Environmental Sustainability, 1st ed., CRC Press, 2022.
  48. R. K. Asmoro, P. Puspitasari, A. A. Permanasari, and M. Abdullah, “Identification of Thermophysical and Rheological Properties of SAE 5w-30 with Addition of Hexagonal Boron Nitride,” Transmisi, vol. 19, no. 1, pp. 41–48, 2023, doi: 10.26905/jtmt.v19i1.9639.
  49. M. Bahrami, M. Akbari, A. Karimipour, and M. Afrand, “An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior,” Experimental Thermal and Fluid Science, vol. 79, pp. 231–237, 2016, doi: 10.1016/j.expthermflusci.2016.07.015.
  50. L. S. Sundar, G. O. Irurueta, E. V. Ramana, M. K. Singh, and A. C. M. Sousa, “Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite,” Case studies in thermal engineering, vol. 7, pp. 66–77, 2016, doi: 10.1016/j.csite.2016.03.001.
  51. J. Sarkar, P. Ghosh, and A. Adil, “A review on hybrid nanofluids: recent research, development and applications,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 164–177, 2015, doi: 10.1016/j.rser.2014.11.023.
  52. T. Luo, X. Wei, H. Zhao, G. Cai, and X. Zheng, “Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives,” Ceramics International, vol. 40, no. 7, pp. 10103–10109, 2014, doi: 10.1016/j.ceramint.2014.03.181.
  53. Y. Sun, C. Jiang, Q. Zhao, X. Wang, and W. Lou, “Tribo-Dependent Photoluminescent Behavior of Oleylamine-Modified AgInS2 and AgInS2-ZnS Nanoparticles as Lubricant Additives,” Lubricants, vol. 11, no. 7, p. 280, 2023, doi: 10.3390/lubricants11070280.
  54. M. Molaei, A. Fattah-Alhosseini, M. Nouri, and M. Kaseem, “Role of TiO2 Nanoparticles in Wet Friction and Wear Properties of PEO Coatings Developed on Pure Titanium,” Metals, vol. 13, no. 4, p. 821, 2023, doi: 10.3390/met13040821.
  55. Y. Gao, M. H. Vini, S. Daneshmand, A. A. Alameri, O. Benjeddou, and R. H. C. Alfilh, “Effect of Processing Parameters on Wear Properties of Hybrid AA1050/Al2O3/TiO2 Composites,” Crystals, vol. 13, no. 2, p. 335, 2023, doi: 10.3390/cryst13020335.
  56. P. Puspitasari, D. D. Pramono, C. S. Putra, A. A. Permanasari, A. M. H. S. Lubis, and M. I. H. C. Abdullah, “Optimization of Performance Carbon-Based Nanolubricant on Ti6Al4V Pin on Disc Testing Using Taguchi Method,” in 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 2023, pp. 1–5.
  57. L. Peña-Parás et al., “Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding,” Tribology International, vol. 119, pp. 88–98, 2018, doi: 10.1016/j.triboint.2017.09.009.
  58. L. Peña-Parás, J. Taha-Tijerina, L. Garza, D. Maldonado-Cortés, R. Michalczewski, and C. Lapray, “Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils,” Wear, vol. 332, pp. 1256–1261, 2015, doi: 10.1016/j.wear.2015.02.038.
  59. M. K. A. Ali, H. Xianjun, L. Mai, C. Qingping, R. F. Turkson, and C. Bicheng, “Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives,” Tribology International, vol. 103, pp. 540–554, 2016, doi: 10.1016/j.triboint.2016.08.011.
  60. R. Molaei, M. R. Zali, M. H. Mobaraki, and J. Y. Farsi, “The impact of entrepreneurial ideas and cognitive style on students entrepreneurial intention,” Journal of Entrepreneurship in Emerging Economies, vol. 6, no. 2, pp. 140–162, 2014, doi: 10.1108/JEEE-09-2013-0021.
  61. E. M. Bortoleto et al., “Experimental and numerical analysis of dry contact in the pin on disc test,” Wear, vol. 301, no. 1–2, pp. 19–26, 2013, doi: 10.1016/j.wear.2012.12.005.
  62. M. Garcia Lleo et al., “Enhanced Tribology of Top-Down Graphene as Efficient Additive in Commercial Engine Oils,” Available at SSRN 4392553.
  63. M. Abdullah, M. F. B. Abdollah, H. Amiruddin, N. Tamaldin, and N. R. M. Nuri, “Effect of hBN/Al2O3 nanoparticle additives on the tribological performance of engine oil,” Jurnal Teknologi, vol. 66, no. 3, pp. 1–6, 2014, doi: 10.11113/jt.v66.2685.
  64. F. Ilie and C. Covaliu, “Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive,” Lubricants, vol. 4, no. 2, p. 12, 2016, doi: 10.3390/lubricants4020012.
  65. M. K. Ahmed Ali, H. Xianjun, F. A. Essa, M. A. A. Abdelkareem, A. Elagouz, and S. W. Sharshir, “Friction and wear reduction mechanisms of the reciprocating contact interfaces using nanolubricant under different loads and speeds,” Journal of Tribology, vol. 140, no. 5, p. 51606, 2018, doi: 10.1115/1.4039720.
  66. P. Puspitasari, A. A. Permanasari, M. I. H. C. Abdullah, D. D. Pramono, and O. J. Silaban, “Tribology Characteristic of Ball Bearing SKF RB-12.7/G20W using SAE 5W-30 Lubricant with Carbon-Based Nanomaterial Addition,” Tribology in Industry, vol. 45, no. 3, 2023, doi: 10.24874/ti.1538.09.23.11.
  67. S. Azam and S.-S. Park, “Sonochemical Synthesis of CuO Nanoplatelets and Their Tribological Properties as an Additive in Synthetic Oil Using Reciprocating Tribometer,” Lubricants, vol. 11, no. 4, p. 185, 2023, doi: 10.3390/lubricants11040185.