Main Article Content

Abstract

Currently, pyrolysis is the primary choice for addressing the significant problems caused by plastic waste. Temperature and catalysts are the main parameters in pyrolysis. However, using catalysts can become a serious problem when scaling up production capacity, as the process can become more complex and expensive due to the high cost of catalysts. Without a catalyst, the required pyrolysis temperature must be sufficiently high to achieve high-quality pyrolytic fuel oil. In this work, plastic grocery bag is pyrolyzed followed by distillation to produce a liquid similar to conventional fuel, called distillate plastic fuel. Non-catalyst and low-temperature pyrolysis was performed at a single temperature of 350 °C, followed by distillation at temperatures of 250 °C and 350 °C to determine the effect of distillation temperature on the chemical properties of the obtained distilled fuel. Elemental and composition analyses were conducted using the GCMS method. Results indicated that the chemical properties and composition of distilled plastic fuel are similar to diesel fuel with a heating value of approximately 43.362 to 44.364 MJ/kg.

Keywords

Plastic Pyrolysis Distillation Distillate oil

Article Details

References

  1. M. O. Rodrigues, N. Abrantes, F. J. M. Gonçalves, H. Nogueira, J. C. Marques, and A. M. M. Gonçalves, “Impacts of plastic products used in daily life on the environment and human health: What is known?,” Environmental Toxicology and Pharmacology, vol. 72, p. 103239, Nov. 2019, doi: 10.1016/j.etap.2019.103239.
  2. P. Lestari and Y. Trihadiningrum, “The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment,” Marine Pollution Bulletin, vol. 149, p. 110505, Dec. 2019, doi: 10.1016/j.marpolbul.2019.110505.
  3. Q. Wang, A. Tweedy, and H. G. Wang, “Reducing plastic waste through legislative interventions in the United States: Development, obstacles, potentials, and challenges,” Sustainable Horizons, vol. 2, p. 100013, Mar. 2022, doi: 10.1016/j.horiz.2022.100013.
  4. S. M. Al-Salem, “Energy Production From Plastic Solid Waste (PSW),” in Plastics to Energy, Elsevier, 2019, pp. 45–64.
  5. J. P. Simanjuntak, S. Anis, M. Syamsiro, Baharuddin, E. Daryanto, and B. H. Tambunan, “Thermal Energy Storage System from Household Wastes Combustion: System Design and Parameter Study,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 80, no. 2, pp. 115–126, Mar. 2021, doi: 10.37934/arfmts.80.2.115126.
  6. H. Jouhara, D. Ahmad, I. van den Boogaert, E. Katsou, S. Simons, and N. Spencer, “Pyrolysis of domestic based feedstock at temperatures up to 300 °C,” Thermal Science and Engineering Progress, vol. 5, pp. 117–143, Mar. 2018, doi: 10.1016/j.tsep.2017.11.007.
  7. J. P. Simanjuntak, E. Daryanto, and B. H. Tambunan, “Performance improvement of biomass combustion-based stove by implementing internally air-distribution,” Journal of Physics: Conference Series, vol. 1811, no. 1, p. 12015, doi: 10.1088/1742-6596/1811/1/012015.
  8. J. P. Simanjuntak, E. Daryanto, and B. H. Tambunan, “An operating parameter study of the biomass solid feedstock incinerator of fixed-bed type with two stage air supply,” Journal of Physics: Conference Series, vol. 2193, no. 1, p. 12077, 2022, doi: 10.1088/1742-6596/2193/1/012077.
  9. G. Pathak and S. Kartik, “Plastic pollution and the open burning of plastic wastes,” Global Environmental Change, vol. 80, p. 102648, 2023, doi: 10.1016/j.gloenvcha.2023.102648.
  10. S. Kartik and et al., “Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis – A review,” Thermal Science and Engineering Progress, vol. 32, p. 101316, 2022, doi: 10.1016/j.tsep.2022.101316.
  11. B. H. Tambunan, H. Ambarita, T. B. Sitorus, A. H. Sebayang, and A. Masudie, “An Overview of Physicochemical Properties and Engine Performance Using Rubber Seed Biodiesel–Plastic Pyrolysis Oil Blends in Diesel Engines,” Automotive Experiences, vol. 6, no. 3, pp. 551–583, 2023, doi: 10.31603/ae.10136.
  12. S. Sunaryo, S. Sutoyo, S. Suyitno, Z. Arifin, T. Kivevele, and A. I. Petrov, “Characteristics of briquettes from plastic pyrolysis by-products,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 57–65, Jun. 2023, doi: 10.31603/mesi.9114.
  13. E. H. Herraprastanti, M. A. Ashraf, R. Wahyusari, and D. Y. Alfreda, “Fuel from plastic waste using the pyrolysis method,” BIS Energy and Engineering, vol. 1, pp. V124011–V124011, 2024, doi: 10.31603/biseeng.34.
  14. I. N. Gusniar, R. Setiawan, V. P. Fahriani, and U. Ujiburrahman, “Study of strength and hardness of plastic waste from polypropylene and low-density polyethylene for speedbump material,” BIS Energy and Engineering, vol. 1, pp. V124038–V124038, 2024, doi: 10.31603/biseeng.63.
  15. A. Nugroho, M. A. Fatwa, P. D. Hurip, H. Murtado, and L. Kurniasari, “Pyrolysis of plastic fishing gear waste for liquid fuel production: Characterization and engine performance analysis,” BIS Energy and Engineering, vol. 1, pp. V124040–V124040, 2024, doi: 10.31603/biseeng.41.
  16. S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy conversion and management, vol. 115, pp. 308–326, 2016, doi: https://doi.org/10.1016/j.enconman.2016.02.037.
  17. J. P. Simanjuntak, B. H. Tambunan, and J. L. Sihombing, “Potential of Pyrolytic Oil from Plastic Waste as an Alternative Fuel Through Thermal Cracking in Indonesia: A Mini Review to Fill the Gap of the Future Research,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 102, no. 2, pp. 196–207, 2023, doi: 10.37934/arfmts.102.2.196207.
  18. Y. Peng and et al., “A review on catalytic pyrolysis of plastic wastes to high-value products,” Energy Convers Manag, vol. 254, p. 115243, 2022, doi: 10.1016/j.enconman.2022.115243.
  19. J. Jiang and et al., “From plastic waste to wealth using chemical recycling: A review,” J Environ Chem Eng, vol. 10, no. 1, p. 106867, 2022, doi: 10.1016/j.jece.2021.106867.
  20. S. H. Shah and et al., “Low temperature conversion of plastic waste into light hydrocarbons,” J Hazard Mater, vol. 179, no. 1–3, pp. 15–20, 2010, doi: 10.1016/j.jhazmat.2010.01.134.
  21. R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami, “Catalytic pyrolysis of plastic waste: A review,” Process Safety and Environmental Protection, vol. 102, pp. 822–838, 2016, doi: 10.1016/j.psep.2016.06.022.
  22. B. Sulistyo, H. Sofyan, T. Sukardi, and A. Widyianto, “Performance and Emission Characteristics Using Dual Injection System of Gasoline and Ethanol,” Automotive Experiences, vol. 6, no. 2, pp. 245–258, May 2023, doi: 10.31603/ae.8070.
  23. K. Sunil Kumar and et al., “Performance, Combustion, and Emission analysis of diesel engine fuelled with pyrolysis oil blends and n-propyl alcohol-RSM optimization and ML modelling,” J Clean Prod, vol. 434, p. 140354, 2024, doi: 10.1016/j.jclepro.2023.140354.
  24. G. N. V. Siddartha and et al., “Effect of fuel additives on internal combustion engine performance and emissions,” Mater Today Proc, vol. 63, pp. A9–A14, 2022, doi: 10.1016/j.matpr.2022.06.307.
  25. D. Saha, A. Sinha, S. Pattanayak, and B. Roy, “Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso-conversional methods,” International Journal of Environmental Science and Technology, vol. 19, no. 1, pp. 391–406, 2022, doi: 10.1007/s13762-020-03106-z.
  26. F. Faisal, M. G. Rasul, M. I. Jahirul, and A. A. Chowdhury, “Waste plastics pyrolytic oil is a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics,” Science of The Total Environment, vol. 886, p. 163756, 2023, doi: 10.1016/j.scitotenv.2023.163756.
  27. L. Sørum, M. G. Grønli, and J. E. Hustad, “Pyrolysis characteristics and kinetics of municipal solid wastes,” Fuel, vol. 80, no. 9, pp. 1217–1227, 2001, doi: 10.1016/S0016-2361(00)00218-0.
  28. B. Hegedüs, Á. B. Palotás, G. Muránszky, and Z. Dobó, “Investigation of gasoline-like transportation fuel obtained by plastic waste pyrolysis and distillation,” J Clean Prod, vol. 447, p. 141500, 2024, doi: 10.1016/j.jclepro.2024.141500.
  29. S. Wang, D. Lee, H. Kim, B. W. Hwang, H. Nam, and H.-J. Ryu, “Separation of MSW pyrolysis fuel using 20 kg scale vacuum distillation system and its potential application as petro-chemical substitute,” J Environ Chem Eng, vol. 10, no. 5, p. 108416, 2022, doi: 10.1016/j.jece.2022.108416.
  30. D. Lee and et al., “Characteristics of fractionated drop-in liquid fuel of plastic wastes from a commercial pyrolysis plant,” Waste Management, vol. 126, pp. 411–422, 2021, doi: 10.1016/j.wasman.2021.03.020.

Most read articles by the same author(s)