Main Article Content

Abstract

Lithium-ion batteries are fundamental to modern electric vehicles, offering high energy density, long cycle life, and low self-discharge rates. However, thermal runaway—a critical safety issue involving uncontrolled temperature increases—can lead to fire or explosion. Ensuring flame retardancy is crucial in accidents where battery packs are exposed to external fires. Additionally, battery packs are susceptible to mechanical stresses and potential damage from ground impacts like debris or uneven road surfaces. Effective thermal management significantly impacts capacity and longevity. This review emphasizes the importance of researching flame retardancy, ground impact resistance, and thermal management, especially in composite battery enclosures. Composites serve as a lightweight alternative to metals and help overcome one of the main constraints of EVs, which is weight. Ground impact refers to the physical force battery packs endure during collisions, hitting potholes, debris, or accidents. Therefore, understanding the effects of ground impact on battery enclosures is crucial for design considerations. Effective thermal management is also essential, as it directly affects the performance and safety of Lithium-ion battery packs in EVs.

Keywords

Flame retardancy Ground impact resistance Battery thermal management Composite Battery enclosures

Article Details

References

  1. B. Azzopardi, A. Hapid, S. Kaleg, Sudirja, D. Onggo, and A. C. Budiman, “Recent Advances in Battery Pack Polymer Composites,” Energies, vol. 16, no. 17, 2023, doi: 10.3390/en16176223.
  2. P. Bamrah, M. K. Chauhan, and B. S. Sikarwar, “CFD Analysis of Battery Thermal Management System,” Journal of Physics: Conference Series, vol. 2178, no. 1, 2022, doi: 10.1088/1742-6596/2178/1/012035.
  3. X. Li, “A review of the possible ways to increase the energy density of Lithium-ion battery,” in Journal of Physics: Conference Series, 2023, vol. 2608, no. 1, doi: 10.1088/1742-6596/2608/1/012013.
  4. J. Halbey, R. Philipsen, T. Schmidt, and M. Ziefle, “Range Makes All the Difference? Weighing up Range, Charging Time and Fast-Charging Network Density as Key Drivers for the Acceptance of Battery Electric Vehicles BT - Advances in Human Aspects of Transportation,” in International Conference on Applied Human Factors and Ergonomics, 2018, pp. 939–950.
  5. E. Guerra, “Electric vehicles, air pollution, and the motorcycle city: A stated preference survey of consumers’ willingness to adopt electric motorcycles in Solo, Indonesia,” Transportation Research Part D: Transport and Environment, vol. 68, pp. 52–64, Mar. 2019, doi: 10.1016/J.TRD.2017.07.027.
  6. H. Maghfiroh, O. Wahyunggoro, and A. I. Cahyadi, “Low Pass Filter as Energy Management for Hybrid Energy Storage of Electric Vehicle: A Survey,” Automotive Experiences, vol. 6, no. 3, pp. 466–484, 2023, doi: 10.31603/ae.9398.
  7. M. H. Aditya, Y. Yuniaristanto, and W. Sutopo, “Exploring the Factors Accelerating the Electric Motorcycle Adoptions: Insights from Theory of Planned Behavior and Travel Behavior,” Automotive Experiences, vol. 7, no. 1, pp. 171–188, May 2024, doi: 10.31603/ae.11044.
  8. Z. Wang, P. Jochem, and W. Fichtner, “A scenario-based stochastic optimization model for charging scheduling of electric vehicles under uncertainties of vehicle availability and charging demand,” Journal of Cleaner Production, vol. 254, p. 119886, 2020, doi: 10.1016/j.jclepro.2019.119886.
  9. M. Straka, M. Jancura, N. Refa, and L. Buzna, “Asynchronously updated predictions of electric vehicles’ connection duration to a charging station,” 2022 7th International Conference on Smart and Sustainable Technologies, SpliTech 2022, pp. 1–6, 2022, doi: 10.23919/SpliTech55088.2022.9854250.
  10. E. M. Szumska and R. S. Jurecki, “Parameters influencing on electric vehicle range,” Energies, vol. 14, no. 16, 2021, doi: 10.3390/en14164821.
  11. X. Zhang, Z. Li, L. Luo, Y. Fan, and Z. Du, “A review on thermal management of lithium-ion batteries for electric vehicles,” Energy, vol. 238, p. 121652, 2022, doi: 10.1016/j.energy.2021.121652.
  12. J. Guo, Y. Li, K. Pedersen, and D. I. Stroe, “Lithium-ion battery operation, degradation, and aging mechanism in electric vehicles: An overview,” Energies, vol. 14, no. 17, 2021, doi: 10.3390/en14175220.
  13. P. Svens, A. J. Smith, J. Groot, M. J. Lacey, G. Lindbergh, and R. W. Lindstrom, “Evaluating Performance and Cycle Life Improvements in the Latest Generations of Prismatic Lithium-Ion Batteries,” IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3696–3706, 2022, doi: 10.1109/TTE.2022.3158838.
  14. A. R. Meddour, N. Rizoug, P. Leserf, C. Vagg, R. Burke, and C. Larouci, “Optimization Approaches for Cost and Lifetime Improvements of Lithium-Ion Batteries in Electric Vehicle Powertrains,” Energies, vol. 16, no. 18, pp. 1–29, 2023, doi: 10.3390/en16186535.
  15. H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium-ion batteries,” Journal of Energy Chemistry, vol. 57, pp. 451–468, 2021, doi: 10.1016/j.jechem.2020.08.056.
  16. S. Link, C. Neef, and T. Wicke, “Trends in Automotive Battery Cell Design: A Statistical Analysis of Empirical Data,” Batteries, vol. 9, no. 5, pp. 1–23, 2023, doi: 10.3390/batteries9050261.
  17. M. K. Hasan, M. Mahmud, A. K. M. Ahasan Habib, S. M. A. Motakabber, and S. Islam, “Review of electric vehicle energy storage and management system: Standards, issues, and challenges,” Journal of Energy Storage, vol. 41, no. December 2020, p. 102940, 2021, doi: 10.1016/j.est.2021.102940.
  18. Y. D. Herlambang et al., “Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance,” Automotive Experiences, vol. 7, no. 1, pp. 18–27, 2024, doi: 10.31603/ae.10506.
  19. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, “Thermal runaway mechanism of lithium ion battery for electric vehicles : A review,” Energy Storage Materials, vol. 10, no. May 2017, pp. 246–267, 2018, doi: 10.1016/j.ensm.2017.05.013.
  20. W. Zhang, Z. Liang, X. Yin, and G. Ling, “Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling,” Applied Thermal Engineering, vol. 184, no. November 2020, p. 116380, 2021, doi: 10.1016/j.applthermaleng.2020.116380.
  21. R. D. McKerracher, J. Guzman-guemez, R. G. A. Wills, S. M. Sharkh, and D. Kramer, “Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries,” Advanced Energy & Sustainability Research, vol. 2, p. 2000059, 2021, doi: 10.1002/aesr.202000059.
  22. S. Shahid and M. Agelin-Chaab, “A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries,” Energy Conversion and Management: X, vol. 16, no. July, p. 100310, 2022, doi: 10.1016/j.ecmx.2022.100310.
  23. A. Gao, W. Dong, F. Xu, X. Xu, and L. Fan, “Study on Thermal Runaway Behavior of Lithium Ion Battery under Overcharge Using Numerical Detecting Method,” in Journal of Physics: Conference Series, 2022, pp. 0–7, doi: 10.1088/1742-6596/2195/1/012017.
  24. H. Zhong, Q. Zhong, J. Yang, and S. Zhong, “Thermal behavior and failure mechanisms of 18650 lithium ion battery induced by overcharging cycling,” Energy Reports, vol. 8, pp. 7286–7296, 2022, doi: 10.1016/j.egyr.2022.05.183.
  25. J. Bai, Z. Wang, T. Gao, W. Bai, and J. Wang, “Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating,” Journal of Power Sources, vol. 507, no. May, p. 230305, 2021, doi: 10.1016/j.jpowsour.2021.230305.
  26. X. Duan, H. Wang, Y. Jia, L. Wang, B. Liu, and J. Xu, “A multiphysics understanding of internal short circuit mechanisms in lithium-ion batteries upon mechanical stress abuse,” Energy Storage Materials, vol. 45, no. December 2021, pp. 667–679, 2022, doi: 10.1016/j.ensm.2021.12.018.
  27. D. Meng, X. Wang, M. Chen, and J. Wang, “Effects of environmental temperature on the thermal runaway of lithium-ion batteries during charging process,” Journal of Loss Prevention in the Process Industries, vol. 83, no. May, p. 105084, 2023, doi: 10.1016/j.jlp.2023.105084.
  28. A. Börger, J. Mertens, and H. Wenzl, “Thermal runaway and thermal runaway propagation in batteries: What do we talk about?,” Journal of Energy Storage, vol. 24, no. August 2018, p. 100649, 2019, doi: 10.1016/j.est.2019.01.012.
  29. J. Fang, J. Cai, and X. He, “Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge,” Applied Thermal Engineering, vol. 197, no. August, p. 117399, 2021, doi: 10.1016/j.applthermaleng.2021.117399.
  30. Y. Fan, Y. Bao, C. Ling, Y. Chu, X. Tan, and S. Yang, “Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries,” Applied Thermal Engineering, vol. 155, no. December 2018, pp. 96–109, 2019, doi: 10.1016/j.applthermaleng.2019.03.157.
  31. S. Shahid and M. Agelin-Chaab, “Development and analysis of a technique to improve air-cooling and temperature uniformity in a battery pack for cylindrical batteries,” Thermal Science and Engineering Progress, vol. 5, no. January, pp. 351–363, 2018, doi: 10.1016/j.tsep.2018.01.003.
  32. S. Shahid and M. Agelin-Chaab, “Analysis of cooling effectiveness and temperature uniformity in a battery pack for cylindrical batteries,” Energies, vol. 10, no. 8, 2017, doi: 10.3390/en10081157.
  33. C. Zhao, A. C. M. Sousa, and F. Jiang, “Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow,” International Journal of Heat and Mass Transfer, vol. 129, pp. 660–670, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.10.017.
  34. Z. Rao, Z. Qian, Y. Kuang, and Y. Li, “Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface,” Applied Thermal Engineering, vol. 123, pp. 1514–1522, 2017, doi: 10.1016/j.applthermaleng.2017.06.059.
  35. Q. Li, H. bo Shi, G. Xie, Z. Xie, and H. ling Liu, “Parametric study and optimization on novel fork-type mini-channel network cooling plates for a Li-ion battery module under high discharge current rates,” International Journal of Energy Research, vol. 45, no. 12, pp. 17784–17804, 2021, doi: 10.1002/er.6933.
  36. K. Monika, C. Chakraborty, S. Roy, R. Sujith, and S. P. Datta, “A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries,” International Journal of Heat and Mass Transfer, vol. 177, p. 121560, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121560.
  37. F. He, X. Li, G. Zhang, G. Zhong, and J. He, “Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials,” International Journal of Energy Research, vol. 42, no. 10, pp. 3279–3288, 2018, doi: 10.1002/er.4081.
  38. A. Hussain, I. H. Abidi, C. Y. Tso, K. C. Chan, Z. Luo, and C. Y. H. Chao, “Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials,” International Journal of Thermal Sciences, vol. 124, no. September 2017, pp. 23–35, 2018, doi: 10.1016/j.ijthermalsci.2017.09.019.
  39. Y. Wei and M. Agelin-Chaab, “Development and experimental analysis of a hybrid cooling concept for electric vehicle battery packs,” Journal of Energy Storage, vol. 25, no. August, p. 100906, 2019, doi: 10.1016/j.est.2019.100906.
  40. S. Shahid and M. Agelin-Chaab, “Development of hybrid thermal management techniques for battery packs,” Applied Thermal Engineering, vol. 186, no. September 2020, p. 116542, 2021, doi: 10.1016/j.applthermaleng.2020.116542.
  41. S. Chen, A. Garg, L. Gao, and X. Wei, “An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging,” International Journal of Energy Research, vol. 45, no. 4, pp. 6198–6212, 2021, doi: 10.1002/er.6241.
  42. J. Hou, M. Yang, D. Wang, and J. Zhang, “Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C,” Advanced Energy Materials, vol. 10, no. 18, pp. 1–23, 2020, doi: 10.1002/aenm.201904152.
  43. R. Yang, M. Wang, and H. Xi, “Thermal investigation and forced air-cooling strategy of battery thermal management system considering temperature non-uniformity of battery pack,” Applied Thermal Engineering, vol. 219, no. PD, p. 119566, 2023, doi: 10.1016/j.applthermaleng.2022.119566.
  44. X. Lai et al., “A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions,” Batteries, vol. 8, no. 11, 2022, doi: 10.3390/batteries8110248.
  45. UNR100, “Agreement: Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on th,” no. 23 March 2022. 2022.
  46. Y. Zhou, F. Wang, T. Xin, X. Wang, Y. Liu, and L. Cong, “Discussion on International Standards Related to Testing and Evaluation of Lithium Battery Energy Storage,” Distributed Generation and Alternative Energy Journal, vol. 37, no. 3, pp. 435–448, 2022, doi: 10.13052/dgaej2156-3306.3732.
  47. D. Darnikowski and M. Mieloszyk, “Investigation into the lithium-ion battery fire resistance testing procedure for commercial use,” Batteries, vol. 7, no. 3, pp. 1–16, 2021, doi: 10.3390/batteries7030044.
  48. P. Ping et al., “Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test,” Journal of Power Sources, vol. 285, pp. 80–89, 2015, doi: 10.1016/j.jpowsour.2015.03.035.
  49. A. Dorsz and M. Lewandowski, “Analysis of fire hazards associated with the operation of electric vehicles in enclosed structures,” Energies, vol. 15, no. 1, 2022, doi: 10.3390/en15010011.
  50. A. La Scala, P. Loprieno, D. Foti, and M. La Scala, “The Mechanical Response of Structural Elements in Enclosed Structures during Electric Vehicle Fires: A Computational Study,” Energies, vol. 16, no. 21, 2023, doi: 10.3390/en16217233.
  51. A. La Scala, M. F. Sabba, and D. Foti, “Fire Hazard of Electric Vehicles in Enclosed Structures,” 2022 AEIT International Annual Conference, AEIT 2022, pp. 1–6, 2022, doi: 10.23919/AEIT56783.2022.9951769.
  52. D. Brzezinska and P. Bryant, “Performance-Based Analysis in Evaluation of Safety in Car Parks under Electric Vehicle Fire Conditions,” Energies, vol. 15, no. 2, 2022, doi: 10.3390/en15020649.
  53. D. Sturk, L. Hoffmann, and A. Ahlberg Tidblad, “Fire Tests on E-vehicle Battery Cells and Packs,” Traffic Injury Prevention, vol. 16, pp. S159–S164, 2015, doi: 10.1080/15389588.2015.1015117.
  54. C. C. Höhne, V. Gettwert, F. Frank, S. Kilian, and A. Menrath, “Bench-scale fuel fire test for materials of rechargeable energy storage system housings,” Journal of Thermal Analysis and Calorimetry, vol. 148, no. 2, pp. 305–313, 2023, doi: 10.1007/s10973-022-11725-6.
  55. L. K. Pratama, S. P. Santosa, T. Dirgantara, and D. Widagdo, “Design and Numerical Analysis of Electric Vehicle Li-Ion Battery Protections Using Lattice Structure Undergoing Ground Impact,” World Electric Vehicle Journal, vol. 13, no. 1, pp. 1–21, 2022, doi: 10.3390/wevj13010010.
  56. T. Kisters, M. Keshavarzi, J. Kuder, and E. Sahraei, “Effects of electrolyte, thickness, and casing stiffness on the dynamic response of lithium-ion battery cells,” Energy Reports, vol. 7, pp. 6451–6461, 2021, doi: 10.1016/j.egyr.2021.09.107.
  57. Y. Xia, T. Wierzbicki, E. Sahraei, and X. Zhang, “Damage of cells and battery packs due to ground impact,” Journal of Power Sources, vol. 267, pp. 78–97, 2014, doi: 10.1016/j.jpowsour.2014.05.078.
  58. J. Zhu, X. Zhang, T. Wierzbicki, Y. Xia, and G. Chen, “Structural Designs for Electric Vehicle Battery Pack against Ground Impact,” SAE Technical Papers, vol. 2018-April, pp. 1–8, 2018, doi: 10.4271/2018-01-1438.
  59. L. Spitthoff, P. R. Shearing, and O. S. Burheim, “Temperature, ageing and thermal management of lithium-ion batteries,” Energies, vol. 14, no. 5, pp. 1–30, 2021, doi: 10.3390/en14051248.
  60. D. Hubble et al., “Liquid electrolyte development for low-temperature lithium-ion batteries,” Energy and Environmental Science, vol. 15, no. 2, pp. 550–578, 2022, doi: 10.1039/d1ee01789f.
  61. S. Lv, X. Wang, W. Lu, J. Zhang, and H. Ni, “The Influence of Temperature on the Capacity of Lithium Ion,” Energies, vol. 15, no. 60, 2022, doi: 10.3390/en15010060.
  62. S. Kumar and R. S. Bharj, “Emerging composite material use in current electric vehicle: A review,” Materials Today: Proceedings, vol. 5, no. 14, pp. 27946–27954, 2018, doi: 10.1016/j.matpr.2018.10.034.
  63. A. Wazeer, A. Das, C. Abeykoon, A. Sinha, and A. Karmakar, “Green Energy and Intelligent Transportation Composites for electric vehicles and automotive sector : A review,” Green Energy and Intelligent Transportation, vol. 2, p. 100043, 2023, doi: 10.1016/j.geits.2022.100043.
  64. D. Carlstedt and L. E. Asp, “Performance analysis framework for structural battery composites in electric vehicles,” Composites Part B: Engineering, vol. 186, no. January, p. 107822, 2020, doi: 10.1016/j.compositesb.2020.107822.
  65. A. Rakhman, K. Diharjo, W. W. Raharjo, V. Suryanti, and S. Kaleg, “Improvement of Fire Resistance and Mechanical Properties of Glass Fiber Reinforced Plastic (GFRP) Composite Prepared from Combination of Active Nano Filler of Modified Pumice and Commercial Active Fillers,” Polymers, vol. 15, no. 1, 2023, doi: 10.3390/polym15010051.
  66. H. Yang, B. C. Ng, H. C. Yu, H. H. Liang, C. C. Kwok, and F. W. Lai, “Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet,” Advanced Composites and Hybrid Materials, vol. 5, no. 1, pp. 83–90, 2022, doi: 10.1007/s42114-021-00213-4.
  67. S. Kaleg, A. C. Budiman, A. Hapid, A. Muharam, D. Ariawan, and K. Diharjo, “Evaluations of Aluminum Tri-Hydroxide and Pristine Montmorillonite in Glass Fiber Reinforced Polymer for Vehicle Components,” International Journal of Automotive and Mechanical Engineering (IJAME), vol. 19, no. 1, pp. 9379–9390, 2022, doi: 10.15282/ijame.19.1.2022.02.0721.
  68. X. Peng et al., “A facile crosslinking strategy endows the traditional additive flame retardant with enormous flame retardancy improvement,” Chemical Engineering Journal, vol. 424, no. March, p. 130404, 2021, doi: 10.1016/j.cej.2021.130404.
  69. J. Feiteiro, M. Mariana, and E. Cairrão, “Health toxicity effects of brominated flame retardants: From environmental to human exposure,” Environmental Pollution, vol. 285, no. April, 2021, doi: 10.1016/j.envpol.2021.117475.
  70. M. Abou-Elwafa Abdallah and S. Harrad, “Dermal uptake of chlorinated organophosphate flame retardants via contact with furniture fabrics; implications for human exposure,” Environmental Research, vol. 209, no. January, p. 112847, 2022, doi: 10.1016/j.envres.2022.112847.
  71. T. D. Hapuarachchi and T. Peijs, “Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated,” Express Polymer Letters, vol. 3, no. 11, pp. 743–751, 2009, doi: 10.3144/expresspolymlett.2009.92.
  72. N. S. Suharty, K. Dihardjo, and D. S. Handayani, “Effect of Single Flame Retardant Aluminum Tri-hydroxide and Boric Acid against Inflammability and Biodegradability of Recycled PP / KF Composites,” AIP Conference Proceedings, vol. 040026, pp. 1–7, 2016, doi: 10.1063/1.4943469.
  73. Z. Chen, M. Jiang, Z. Chen, T. Chen, Y. Yu, and J. Jiang, “Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins,” Powder Technology, vol. 354, pp. 71–81, 2019, doi: 10.1016/j.powtec.2019.05.077.
  74. T. K. Ma, Y. M. Yang, J. J. Jiang, M. Yang, and J. C. Jiang, “Synergistic Flame Retardancy of Microcapsules Based on Ammonium Polyphosphate and Aluminum Hydroxide for Lithium-Ion Batteries,” ACS Omega, vol. 6, no. 33, pp. 21227–21234, 2021, doi: 10.1021/acsomega.1c00598.
  75. H. Lipiäinen, Q. Chen, J. Larismaa, and S. P. Hannula, “The effect of fire retardants on the fire resistance of unsaturated polyester resin coating,” Key Engineering Materials, vol. 674, no. i, pp. 277–282, 2016, doi: 10.4028/www.scientific.net/KEM.674.277.
  76. C. Liang, Y. Du, Y. Wang, A. Ma, S. Huang, and Z. Ma, “Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding,” Advanced Composites and Hybrid Materials, vol. 4, no. 4, pp. 979–988, 2021, doi: 10.1007/s42114-021-00274-5.
  77. W. He, P. Song, B. Yu, Z. Fang, and H. Wang, “Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants,” Progress in Materials Science, vol. 114, no. July 2019, p. 100687, 2020, doi: 10.1016/j.pmatsci.2020.100687.
  78. Y. Kim, S. Lee, and H. Yoon, “Fire-Safe polymer composites: Flame-retardant effect of nanofillers,” Polymers, vol. 13, no. 4, pp. 1–49, 2021, doi: 10.3390/polym13040540.
  79. E. V. Bachtiar, K. Kurkowiak, L. Yan, B. Kasal, and T. Kolb, “Thermal stability, fire performance, and mechanical properties of natural fibre fabric-reinforced polymer composites with different fire retardants,” Polymers, vol. 11, no. 4, 2019, doi: 10.3390/polym11040699.
  80. J. H. Troitzsch, “Fire performance durability of flame retardants in polymers and coatings,” Advanced Industrial and Engineering Polymer Research, vol. 7, no. 3, pp. 263–272, 2024, doi: 10.1016/j.aiepr.2023.05.002.
  81. B. De, M. Bera, D. Bhattacharjee, B. C. Ray, and S. Mukherjee, “A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management,” Progress in Materials Science, vol. 146, no. June, p. 101326, 2024, doi: 10.1016/j.pmatsci.2024.101326.
  82. E. Amasawa, M. Hasegawa, N. Yokokawa, H. Sugiyama, and M. Hirao, “Environmental performance of an electric vehicle composed of 47 % polymers and polymer composites,” Sustainable Materials and Technologies, vol. 25, p. e00189, 2020, doi: 10.1016/j.susmat.2020.e00189.
  83. A. A. Bogdanov, S. V. Panin, and P. V. Kosmachev, “Fatigue Damage Assessment and Lifetime Prediction of Short Fiber Reinforced Polymer Composites—A Review,” Journal of Composites Science, vol. 7, no. 12, pp. 1–30, 2023, doi: 10.3390/jcs7120484.
  84. W. Zhao, J. He, P. Yu, X. Jiang, and L. Zhang, “Recent progress in the rubber antioxidants: A review,” Polymer Degradation and Stability, vol. 207, no. October 2022, p. 110223, 2023, doi: 10.1016/j.polymdegradstab.2022.110223.
  85. X. Li, J. Zhang, L. Zhang, A. Ruiz de Luzuriaga, A. Rekondo, and D. Y. Wang, “Recyclable flame-retardant epoxy composites based on disulfide bonds: Flammability and recyclability,” Composites Communications, vol. 25, no. April, p. 100754, 2021, doi: 10.1016/j.coco.2021.100754.
  86. S. Kaleg, D. Ariawan, and K. Diharjo, “The flexural strength of glass fiber reinforced polyester filled with aluminum tri-hydroxide and montmorillonite,” in Key Engineering Materials, 2018, vol. 772, pp. 28–32, doi: 10.4028/www.scientific.net/KEM.772.28.
  87. M. M. Y. Zaghloul and M. M. Y. Zaghloul, “Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites,” Journal of Reinforced Plastics and Composites, vol. 36, no. 24, pp. 1802–1816, 2017, doi: 10.1177/0731684417727143.
  88. S. Hazer, M. Coban, and A. Aytac, “Effects of ammonium polyphosphate and triphenyl phosphate on the flame retardancy, thermal, and mechanical properties of glass fiber–reinforced PLA/PC composites,” Fire and Materials, vol. 43, no. 3, pp. 277–282, 2019, doi: 10.1002/fam.2696.
  89. O. C. Gunes, R. Gomek, A. Tamar, O. K. Kandemir, A. Karaorman, and A. Z. Albayrak, “Comparative Study on Flame Retardancy, Thermal, and Mechanical Properties of Glass Fiber Reinforced Polyester Composites with Ammonium Polyphosphate, Expandable Graphite, and Aluminum Tri-hydroxide,” Arabian Journal for Science and Engineering, vol. 43, pp. 6211–6218, 2018, doi: 10.1007/s13369-018-3397-6.
  90. E. Akdoğan, A. R. Tarakcılar, M. Topcu, and R. Yurtseven, “The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials,” Pamukkale University Journal of Engineering Sciences, vol. 21, no. 8, pp. 376–380, 2015, doi: 10.5505/pajes.2015.24572.
  91. S. Elbasuney, “Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH),” Powder Technology, vol. 305, pp. 538–545, 2017, doi: 10.1016/j.powtec.2016.10.038.
  92. G. Belingardi and A. Scattina, “Battery Pack and Underbody: Integration in the Structure Design for Battery Electric Vehicles—Challenges and Solutions,” Vehicles, vol. 5, no. 2, pp. 498–514, 2023, doi: 10.3390/vehicles5020028.
  93. F. Lionetto, N. Arianpouya, B. Bozzini, A. Maffezzoli, M. Nematollahi, and C. Mele, “Advances in zinc-ion structural batteries,” Journal of Energy Storage, vol. 84, no. PA, p. 110849, 2024, doi: 10.1016/j.est.2024.110849.
  94. S. Arora, W. Shen, and A. Kapoor, “Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1319–1331, 2016, doi: 10.1016/j.rser.2016.03.013.
  95. H. J. Um, Y. T. Hwang, I. J. Bae, and H. S. Kim, “Design and manufacture of thermoplastic carbon fiber/polyethylene terephthalate composites underbody shield to protect the lithium-ion batteries for electric mobility from ground impact,” Composites Part B: Engineering, vol. 238, no. February, p. 109892, 2022, doi: 10.1016/j.compositesb.2022.109892.
  96. N. A. Z. Abdullah, M. S. M. Sani, M. S. Salwani, and N. A. Husain, “A review on crashworthiness studies of crash box structure,” Thin-Walled Structures, vol. 153, no. May, p. 106795, 2020, doi: 10.1016/j.tws.2020.106795.
  97. K. Wang, Y. Liu, J. Wang, J. Xiang, S. Yao, and Y. Peng, “On crashworthiness behaviors of 3D printed multi-cell filled thin-walled structures,” Engineering Structures, vol. 254, p. 113907, 2022, doi: https://doi.org/10.1016/j.engstruct.2022.113907.
  98. J. Xu and H. Yuan, “Analysis of temperature gradients in thin-walled structures under thermomechanical fatigue loading conditions,” International Journal of Fatigue, vol. 166, no. June 2022, p. 107254, 2023, doi: 10.1016/j.ijfatigue.2022.107254.
  99. J. Guo et al., “A review on failure mechanism and mechanical performance improvement of FRP-metal adhesive joints under different temperature-humidity,” Thin-Walled Structures, vol. 188, no. November 2022, p. 110788, 2023, doi: 10.1016/j.tws.2023.110788.
  100. A. F. Zakki and A. Windyandari, “Numerical study on crushing damage and energy absorption of multi-cell glass fibre-reinforced composite panel: Application to the crash absorber design of tsunami lifeboat,” Curved and Layered Structures, vol. 10, no. 1, 2023, doi: 10.1515/cls-2022-0211.
  101. N. N. Hussain, S. P. Regalla, Y. V. D. Rao, T. Dirgantara, L. Gunawan, and A. Jusuf, “Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 235, no. 1, pp. 114–130, 2021, doi: 10.1177/1464420720952813.
  102. X. Y. Ang et al., “Evaluation of Automotive Bio-Composites Crash Box Performance,” International Journal of Automotive and Mechanical Engineering, vol. 20, no. 4, pp. 10943–10952, 2023, doi: 10.15282/ijame.20.4.2023.11.0846.
  103. P. Anbumani, A. Babbar, K. Arunprasath, A. Sahu, V. Kumar, and L. K. Singh, “Finite element modeling and analysis of crashworthiness performance of bioinspired thin-walled tapered tubular structures,” International Journal on Interactive Design and Manufacturing, 2024, doi: 10.1007/s12008-023-01727-5.
  104. S. Pirmohammad, “Crashworthiness performance of concentric structures with different cross-sectional shapes under multiple loading conditions,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 235, no. 2–3, pp. 417–435, 2021, doi: 10.1177/0954407020961885.
  105. Z. Li, W. Ma, L. Hou, P. Xu, and S. Yao, “Crashworthiness analysis of corrugations reinforced multi-cell square tubes,” Thin-Walled Structures, vol. 150, no. February, p. 106708, 2020, doi: 10.1016/j.tws.2020.106708.
  106. R. Qin, X. Wang, F. Gao, and B. Chen, “Energy absorption performance of hexagonal multi-cell tube with hierarchy under axial loading,” Thin-Walled Structures, vol. 169, no. April, p. 108392, 2021, doi: 10.1016/j.tws.2021.108392.
  107. Y. Chen, Z. Bai, L. Zhang, Y. Wang, G. Sun, and L. Cao, “Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles,” Thin-Walled Structures, vol. 110, no. November 2016, pp. 133–139, 2017, doi: 10.1016/j.tws.2016.11.001.
  108. S. Yao, H. Zhu, M. Liu, Z. Li, and P. Xu, “Energy absorption of origami tubes with polygonal cross-sections,” Thin-Walled Structures, vol. 157, no. June, p. 107013, 2020, doi: 10.1016/j.tws.2020.107013.
  109. M. Yang, R. A. Nicholls, M. A. Moghimi, and A. L. Griffiths, “Performance management of EV battery coupled with latent heat jacket at cell level,” Journal of Power Sources, vol. 558, no. January, p. 232618, 2023, doi: 10.1016/j.jpowsour.2022.232618.
  110. T. Talluri, T. H. Kim, and K. J. Shin, “Analysis of a battery pack with a phase change material for the extreme temperature conditions of an electrical vehicle,” Energies, vol. 13, no. 3, p. 507, 2020, doi: 10.3390/en13030507.
  111. A. C. Budiman et al., “Experimental study of two organic phase change materials in cylindrical containers for battery module thermal management: A comparative analysis,” Journal of Physics: Conference Series, vol. 2047, no. 1, pp. 0–8, 2021, doi: 10.1088/1742-6596/2047/1/012018.
  112. H. Jouhara, N. Serey, N. Khordehgah, R. Bennett, S. Almahmoud, and S. P. Lester, “Investigation, development and experimental analyses of a heat pipe based battery thermal management system,” International Journal of Thermofluids, vol. 1–2, p. 100004, 2020, doi: 10.1016/j.ijft.2019.100004.
  113. W. Wu et al., “An innovative battery thermal management with thermally induced flexible phase change material,” Energy Conversion and Management, vol. 221, p. 113145, 2020, doi: 10.1016/j.enconman.2020.113145.
  114. A. R. Abdulmunem, P. Mohd, H. Abdul, H. A. Hussien, and H. Ghazali, “A novel thermal regulation method for photovoltaic panels using porous metals filled with phase change material and nanoparticle additives,” Journal of Energy Storage, vol. 39, p. 102621, 2021, doi: 10.1016/j.est.2021.102621.
  115. K. Chen, Y. Chen, Z. Li, F. Yuan, and S. Wang, “Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system,” International Journal of Heat and Mass Transfer, vol. 127, pp. 393–401, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.06.131.
  116. R. Ren, Y. Zhao, Y. Diao, L. Liang, and H. Jing, “Active air cooling thermal management system based on U-shaped micro heat pipe array for lithium-ion battery,” Journal of Power Sources, vol. 507, no. 100, p. 230314, 2021, doi: 10.1016/j.jpowsour.2021.230314.
  117. R. Ren, Y. Zhao, Y. Diao, and L. Liang, “Experimental study on the bottom liquid cooling thermal management system for lithium-ion battery based on multichannel flat tube,” Applied Thermal Engineering, vol. 219, no. PC, p. 119636, 2023, doi: 10.1016/j.applthermaleng.2022.119636.
  118. S. Gungor, E. Cetkin, and S. Lorente, “Canopy-to-canopy liquid cooling for the thermal management of lithium-ion batteries, a constructal approach,” International Journal of Heat and Mass Transfer, vol. 182, p. 121918, 2022, doi: 10.1016/j.ijheatmasstransfer.2021.121918.
  119. H. Behi, D. Karimi, R. Youssef, M. S. Patil, J. van Mierlo, and M. Berecibar, “Comprehensive passive thermal management systems for electric vehicles,” Energies, vol. 14, no. 13, 2021, doi: 10.3390/en14133881.
  120. L. Ianniciello, P. H. Biwole, P. Achard, L. Ianniciello, P. H. Biwole, and P. Achard, “A hybrid system for battery thermal management for electric vehicles To cite this version : HAL Id : hal-01652212 European Battery , Hybrid and Fuel Cell Electric Vehicle Congress A HYBRID SYSTEM FOR BATTERY THERMAL MANAGEMENT FOR ELECTRIC VEHICLES,” 2017.
  121. Y. Zhao et al., “Mechanical-thermal coupling design on battery pack embedded with concave quadrilateral cellular structure,” Applied Thermal Engineering, vol. 260, no. October 2024, 2025, doi: 10.1016/j.applthermaleng.2024.124973.
  122. J. Luo, D. Zou, Y. Wang, S. Wang, and L. Huang, “Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review,” Chemical Engineering Journal, vol. 430, no. P1, p. 132741, 2022, doi: 10.1016/j.cej.2021.132741.
  123. Q. Zhang, Y. Huo, and Z. Rao, “Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management,” Science Bulletin, vol. 61, no. 5, pp. 391–400, 2016, doi: 10.1007/s11434-016-1016-z.
  124. S. Kahwaji, M. B. Johnson, A. C. Kheirabadi, D. Groulx, and M. A. White, “A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications,” Energy, vol. 162, pp. 1169–1182, 2018, doi: 10.1016/j.energy.2018.08.068.
  125. M. Mehrabi-Kermani, E. Houshfar, and M. Ashjaee, “A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection,” International Journal of Thermal Sciences, vol. 141, pp. 47–61, 2019, doi: 10.1016/j.ijthermalsci.2019.03.026.
  126. C. Liu et al., “Phase change materials application in battery thermal management system: A review,” Materials, vol. 13, no. 20, pp. 1–37, 2020, doi: 10.3390/ma13204622.
  127. L. H. Saw, Y. Ye, M. C. Yew, W. T. Chong, M. K. Yew, and T. C. Ng, “Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system,” Applied Energy, vol. 204, pp. 1489–1499, 2017, doi: 10.1016/j.apenergy.2017.04.022.
  128. J. Zhang et al., “Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management,” Energy Conversion and Management, vol. 204, no. November 2019, p. 112319, 2020, doi: 10.1016/j.enconman.2019.112319.
  129. Q. Huang, X. Li, G. Zhang, J. Deng, and C. Wang, “Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials,” Applied Thermal Engineering, vol. 183, no. P1, p. 116151, 2021, doi: 10.1016/j.applthermaleng.2020.116151.
  130. G. Jiang, J. Huang, M. Liu, and M. Cao, “Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material,” Applied Thermal Engineering, vol. 120, pp. 1–9, 2017, doi: 10.1016/j.applthermaleng.2017.03.107.
  131. M. Joula, S. Dilibal, G. Mafratoglu, J. O. Danquah, and M. Alipour, “Hybrid Battery Thermal Management System with NiTi SMA and Phase Change Material (PCM) for Li-Ion Batteries,” Energies, vol. 15, no. 12, 2022, doi: 10.3390/en15124403.
  132. A. K. Mishra, B. B. Lahiri, and J. Philip, “Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage,” Energy, vol. 191, p. 116572, 2020, doi: 10.1016/j.energy.2019.116572.
  133. H. Nikpourian, A. R. Bahramian, and M. Abdollahi, “On the thermal performance of a novel PCM nanocapsule: The effect of core/shell,” Renewable Energy, vol. 151, pp. 322–331, 2020, doi: 10.1016/j.renene.2019.11.027.
  134. G. Kadam and P. Kongi, “Battery thermal management system based on PCM with addition of nanoparticles,” Materials Today: Proceedings, vol. 72, pp. 1543–1549, 2023, doi: 10.1016/j.matpr.2022.09.384.
  135. A. C. Budiman et al., “Phase Change Material Composite Battery Module for Thermal Protection of Electric Vehicles: An Experimental Observation,” Energies, vol. 16, p. 3896, 2023, doi: 10.3390/en16093896.
  136. X. Luo et al., “Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries,” Renewable Energy, vol. 145, pp. 2046–2055, 2020, doi: 10.1016/j.renene.2019.07.112.
  137. M. Cao, J. Huang, and Z. Liu, “The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries,” Advances in Materials Science and Engineering, vol. 2020, p. 8167386, 2020, doi: 10.1155/2020/8167386.
  138. M. Subramanian et al., “Numerical and Experimental Investigation on Enhancing Thermal Conductivity of Paraffin Wax with Expanded Graphene in Battery Thermal Management System,” International Journal of Environmental Research, vol. 16, no. 1, pp. 1–14, 2022, doi: 10.1007/s41742-021-00389-z.
  139. M. W. Nazar, N. Iqbal, M. Ali, H. Nazir, and M. Z. Bin Amjad, “Thermal management of Li-ion battery by using active and passive cooling method,” Journal of Energy Storage, vol. 61, no. February, p. 106800, 2023, doi: 10.1016/j.est.2023.106800.
  140. Y. Qiu and F. Jiang, “A review on passive and active strategies of enhancing the safety of lithium-ion batteries,” International Journal of Heat and Mass Transfer, vol. 184, p. 122288, 2022, doi: 10.1016/j.ijheatmasstransfer.2021.122288.
  141. M. A. Bamdezh and G. R. Molaeimanesh, “The effect of active and passive battery thermal management systems on energy consumption, battery degradation, and carbon emissions of an electric vehicle,” Energy, vol. 304, no. May, p. 132134, 2024, doi: 10.1016/j.energy.2024.132134.
  142. W. Zichen and D. Changqing, “A comprehensive review on thermal management systems for power lithium-ion batteries,” Renewable and Sustainable Energy Reviews, vol. 139, no. December 2020, p. 110685, 2021, doi: 10.1016/j.rser.2020.110685.
  143. G. Zhao, X. Wang, M. Negnevitsky, and H. Zhang, “A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles,” Journal of Power Sources, vol. 501, no. April, p. 230001, 2021, doi: 10.1016/j.jpowsour.2021.230001.
  144. B. Mondal, C. F. Lopez, A. Verma, and P. P. Mukherjee, “Vortex generators for active thermal management in lithium-ion battery systems,” International Journal of Heat and Mass Transfer, vol. 124, pp. 800–815, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.015.
  145. G. Hailu, M. Henke, and T. Petersen, “Stationary Battery Thermal Management: Analysis of Active Cooling Designs,” Batteries, vol. 8, no. 3, 2022, doi: 10.3390/batteries8030023.
  146. Z. An, L. Jia, X. Li, and Y. Ding, “Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel,” Applied Thermal Engineering, vol. 117, pp. 534–543, 2017, doi: 10.1016/j.applthermaleng.2017.02.053.
  147. X. H. Yang, S. C. Tan, and J. Liu, “Thermal management of Li-ion battery with liquid metal,” Energy Conversion and Management, vol. 117, pp. 577–585, 2016, doi: 10.1016/j.enconman.2016.03.054.
  148. J. Zhao, Z. Rao, and Y. Li, “Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery,” Energy Conversion and Management, vol. 103, pp. 157–165, 2015, doi: 10.1016/j.enconman.2015.06.056.
  149. S. Mousavi, A. Zadehkabir, M. Siavashi, and X. Yang, “An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials,” Applied Energy, vol. 334, no. October 2021, p. 120643, 2023, doi: 10.1016/j.apenergy.2023.120643.

Most read articles by the same author(s)