Main Article Content

Abstract

This study investigated the catalytic pyrolysis of polypropylene (PP) and low-density polyethylene (LDPE) using 10 wt.% red mud and 10 wt.% limestone catalysts in a batch reactor. The process was conducted at an operating temperature of 350°C with retention times of 30, 60, and 90 minutes. The effects of adding red mud and limestone catalysts on the yields of liquid, solid, and gas pyrolysis products were analyzed. The pyrolytic oil was further evaluated using droplet evaporation measurements, equipped with a K-type thermocouple and a CCD camera to monitor droplet evolution within an atmospheric chamber. The addition of catalysts enhanced the liquid product yield while reducing the solid yield. The catalytic pyrolysis successfully facilitated the isomerization of plastic polymers, breaking the carbon chains of PP with 10 wt.% red mud. Olefin content increased by up to 7.3% for both 10 wt.% red mud and 10 wt.% limestone. Furthermore, the evaporation rate constant of the catalytic pyrolysis oils improved by up to 8.3%. This study aims to provide new insights into utilizing local waste materials to enhance the quality of pyrolytic plastic products.

Keywords

Catalytic pyrolysis LDPE Polypropylene Red mud Limestone Single droplet

Article Details

References

  1. H. I. Abdel-Shafy and M. S. M. Mansour, “Solid waste issue: Sources, composition, disposal, recycling, and valorization,” Egyptian Journal of Petroleum, vol. 27, no. 4, pp. 1275–1290, Dec. 2018, doi: 10.1016/j.ejpe.2018.07.003.
  2. T. Trismawati, H. Y. Nanlohy, H. Riupassa, and S. Marianingsih, “Computational Fluid Dynamics Analysis of Temperature Distribution in Solar Distillation Panel with Various Flat Plate Materials,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 1, p. 108, Jul. 2024, doi: 10.17977/um0168i12024p108.
  3. Y. Liang, Q. Tan, Q. Song, and J. Li, “An analysis of the plastic waste trade and management in Asia,” Waste Management, vol. 119, pp. 242–253, 2021, doi: 10.1016/j.wasman.2020.09.049.
  4. N. Evode, S. A. Qamar, M. Bilal, D. Barceló, and H. M. N. Iqbal, “Plastic waste and its management strategies for environmental sustainability,” Case Studies in Chemical and Environmental Engineering, vol. 4, p. 100142, 2021, doi: 10.1016/j.cscee.2021.100142.
  5. S. H. Pangestika, K. Saptaji, A. A. N. P. Redi, A. B. D. Nandiyanto, S. D. Liman, and F. Triawan, “Utilization of plastic waste to improve properties of road material: A review,” Mechanical Engineering for Society and Industry, vol. 3, no. 3, pp. 119–135, 2023, doi: 10.31603/mesi.10133.
  6. S. Sunaryo, S. Sutoyo, S. Suyitno, Z. Arifin, T. Kivevele, and A. I. Petrov, “Characteristics of briquettes from plastic pyrolysis by-products,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 57–65, Jun. 2023, doi: 10.31603/mesi.9114.
  7. B. H. Tambunan, H. Ambarita, T. B. Sitorus, A. H. Sebayang, and A. Masudie, “An Overview of Physicochemical Properties and Engine Performance Using Rubber Seed Biodiesel–Plastic Pyrolysis Oil Blends in Diesel Engines,” Automotive Experiences, vol. 6, no. 3, pp. 551–583, 2023, doi: 10.31603/ae.10136.
  8. E. H. Herraprastanti, M. A. Ashraf, R. Wahyusari, and D. Y. Alfreda, “Fuel from plastic waste using the pyrolysis method,” BIS Energy and Engineering, vol. 1, pp. V124011–V124011, 2024, doi: 10.31603/biseeng.34.
  9. S. Sunaryo, S. Suyitno, Z. Arifin, M. Setiyo, H. Hermawan, and A. Irfan, “Improving oil quality from waste pyrolysis using natural zeolite catalysts: towards sustainable resource recovery,” BIS Energy and Engineering, vol. 1, pp. V124037–V124037, 2024, doi: 10.31603/biseeng.65.
  10. A. Nugroho, M. A. Fatwa, P. D. Hurip, H. Murtado, and L. Kurniasari, “Pyrolysis of plastic fishing gear waste for liquid fuel production: Characterization and engine performance analysis,” BIS Energy and Engineering, vol. 1, pp. V124040–V124040, 2024, doi: 10.31603/biseeng.52.
  11. F. J. Medaiyese, H. R. Nasriani, L. Khajenoori, K. Khan, and A. Badiei, “From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes,” Sustainability, vol. 16, no. 12. 2024, doi: 10.3390/su16124973.
  12. F. Zhang et al., “Current technologies for plastic waste treatment: A review,” Journal of Cleaner Production, vol. 282, p. 124523, 2021, doi: 10.1016/j.jclepro.2020.124523.
  13. L. Dai et al., “Pyrolysis technology for plastic waste recycling: A state-of-the-art review,” Progress in Energy and Combustion Science, vol. 93, p. 101021, 2022, doi: 10.1016/j.pecs.2022.101021.
  14. T. Zhang et al., “Co-pyrolysis of coal-derived sludge and low-rank coal: Thermal behaviour and char yield prediction,” Fuel Processing Technology, vol. 267, p. 108165, 2025, doi: 10.1016/j.fuproc.2024.108165.
  15. S. Chhabria et al., “Valorization of Hazardous Materials along with Biomass for Green Energy Generation and Environmental Sustainability through Pyrolysis,” Journal of Chemistry, vol. 2022, no. 1, p. 2215883, Jan. 2022, doi: 10.1155/2022/2215883.
  16. R. Gautam, M. AlAbbad, E. R. Guevara, and S. Mani Sarathy, “On the products from the pyrolysis of heavy fuel and vacuum residue oil,” Journal of Analytical and Applied Pyrolysis, vol. 173, p. 106060, 2023, doi: 10.1016/j.jaap.2023.106060.
  17. T. S. Livingston, P. Madhu, C. S. Dhanalakshmi, and R. V. Kumar, “An experimental investigation on performance, emission and combustion characteristics of IC engine using liquid fuel produced through catalytic co-pyrolysis of pressed oil cake and mixed plastics with the addition of nanoparticles,” Fuel, 2025, doi: 10.1016/j.fuel.2024.133092.
  18. B. Alawa and S. Chakma, “A review on feasibility and techno-economic analysis of hydrocarbon liquid fuels production via catalytic pyrolysis of waste plastic materials,” Carbon Capture Science & Technology, vol. 14, p. 100337, 2025, doi: 10.1016/j.ccst.2024.100337.
  19. V. K. Soni, G. Singh, B. K. Vijayan, A. Chopra, G. S. Kapur, and S. S. V Ramakumar, “Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review,” Energy & Fuels, vol. 35, no. 16, pp. 12763–12808, Aug. 2021, doi: 10.1021/acs.energyfuels.1c01292.
  20. Subhashini and T. Mondal, “Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil,” Journal of Environmental Management, vol. 344, p. 118680, 2023, doi: 10.1016/j.jenvman.2023.118680.
  21. M. H. Rahman, P. R. Bhoi, and P. L. Menezes, “Pyrolysis of waste plastics into fuels and chemicals: A review,” Renewable and Sustainable Energy Reviews, vol. 188, p. 113799, 2023, doi: 10.1016/j.rser.2023.113799.
  22. C. J. Wrasman et al., “Catalytic pyrolysis as a platform technology for supporting the circular carbon economy,” Nature Catalysis, vol. 6, no. 7, pp. 563–573, 2023, doi: 10.1038/s41929-023-00985-6.
  23. A. N. Amenaghawon, C. L. Anyalewechi, C. O. Okieimen, and H. S. Kusuma, “Biomass pyrolysis technologies for value-added products: a state-of-the-art review,” Environment, Development and Sustainability, vol. 23, no. 10, pp. 14324–14378, 2021, doi: 10.1007/s10668-021-01276-5.
  24. K. Y. Aung, Q. Li, M. Wei, F. Chen, and T. Yan, “Unlocking the potential of rice husk pyrolysis oil: Dual production of high-energy solid fuel and Fe2+ detecting carbon nanodots for environmental application,” Journal of Analytical and Applied Pyrolysis, vol. 183, p. 106724, 2024, doi: 10.1016/j.jaap.2024.106724.
  25. W. Jerzak, A. Mlonka-Mędrala, N. Gao, and A. Magdziarz, “Potential of products from high-temperature pyrolysis of biomass and refuse-derived fuel pellets,” Biomass and Bioenergy, vol. 183, p. 107159, 2024, doi: 10.1016/j.biombioe.2024.107159.
  26. B. Qiu, X. Tao, J. Wang, Y. Liu, S. Li, and H. Chu, “Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review,” Energy Conversion and Management, vol. 261, p. 115647, 2022, doi: 10.1016/j.enconman.2022.115647.
  27. Y. H. Chang et al., “Unveiling the energy dynamics of plastic and sludge co-pyrolysis: A review and bibliometric exploration on catalysts and bioenergy generation potential,” Journal of Analytical and Applied Pyrolysis, vol. 186, p. 106885, 2025, doi: 10.1016/j.jaap.2024.106885.
  28. A. Y. Goren, I. Dincer, S. B. Gogoi, P. Boral, and D. Patel, “Recent developments on carbon neutrality through carbon dioxide capture and utilization with clean hydrogen for production of alternative fuels for smart cities,” International Journal of Hydrogen Energy, vol. 79, pp. 551–578, 2024, doi: 10.1016/j.ijhydene.2024.06.421.
  29. M. H. M. Ahmed, N. Batalha, H. M. D. Mahmudul, G. Perkins, and M. Konarova, “A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism,” Bioresource Technology, vol. 310, p. 123457, 2020, doi: 10.1016/j.biortech.2020.123457.
  30. X. Chen, L. Cheng, J. Gu, H. Yuan, and Y. Chen, “Chemical recycling of plastic wastes via homogeneous catalysis: A review,” Chemical Engineering Journal, vol. 479, p. 147853, 2024, doi: 10.1016/j.cej.2023.147853.
  31. T. Tan et al., “Upcycling Plastic Wastes into Value-Added Products by Heterogeneous Catalysis,” ChemSusChem, vol. 15, no. 14, p. e202200522, 2022, doi: 10.1002/cssc.202200522.
  32. G. Su, H. C. Ong, M. Mofijur, T. M. I. Mahlia, and Y. S. Ok, “Pyrolysis of waste oils for the production of biofuels: A critical review,” Journal of Hazardous Materials, vol. 424, p. 127396, 2022, doi: 10.1016/j.jhazmat.2021.127396.
  33. R. K. Mishra, D. Jaya Prasanna Kumar, R. Sankannavar, P. Binnal, and K. Mohanty, “Hydro-deoxygenation of pyrolytic oil derived from pyrolysis of lignocellulosic biomass: A review,” Fuel, vol. 360, p. 130473, 2024, doi: 10.1016/j.fuel.2023.130473.
  34. R. K. Mishra, S. M. Chistie, S. U. Naika, and K. Mohanty, “Catalytic pyrolysis of biomass over zeolites for bio-oil and chemical production: A review on their structure, porosity and acidity co-relation,” Bioresource Technology, vol. 366, p. 128189, 2022, doi: 10.1016/j.biortech.2022.128189.
  35. B. Qiu, C. Yang, Q. Shao, Y. Liu, and H. Chu, “Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review,” Fuel, vol. 315, p. 123218, 2022, doi: 10.1016/j.fuel.2022.123218.
  36. S. Saikrishnan, D. Jubinville, C. Tzoganakis, and T. H. Mekonnen, “Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling,” Polymer Degradation and Stability, vol. 182, p. 109390, 2020, doi: 10.1016/j.polymdegradstab.2020.109390.
  37. L. Ballice, “Classification of volatile products evolved during temperature-programmed co-pyrolysis of low-density polyethylene (LDPE) with polypropylene (PP),” Fuel, vol. 81, no. 9, pp. 1233–1240, 2002, doi: 10.1016/S0016-2361(01)00130-2.
  38. Ilmi et al., “Simulation of pyrolysis process for waste plastics using Aspen Plus: Performance and emission analysis of PPO-diesel and PPO-biodiesel blends,” Case Studies in Thermal Engineering, vol. 64, p. 105431, 2024, doi: 10.1016/j.csite.2024.105431.
  39. G. Ahmed and N. Kishore, “Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products,” Renewable Energy, vol. 219, p. 119460, 2023, doi: 10.1016/j.renene.2023.119460.
  40. Z. Li et al., “Formation mechanism of hydrogen production from catalytic pyrolysis of waste tires: A ReaxFF molecular dynamics and experimental study,” Fuel, vol. 341, p. 127664, 2023, doi: 10.1016/j.fuel.2023.127664.
  41. E. Marlina, A. F. Alhikami, B. Waluyo, S. Rahima Sahwahita, and I. N. G. Wardana, “A study of blending carbon nanoparticles made of coconut shell (fullerene C60) in vegetable oils on the droplet evaporation characteristics,” Fuel, vol. 346, p. 128319, 2023, doi: 10.1016/j.fuel.2023.128319.
  42. A. A. Mehrizi et al., “Evaporation characteristics of nanofuel droplets: A review,” Fuel, vol. 319, p. 123731, 2022, doi: 10.1016/j.fuel.2022.123731.
  43. E. Marlina, W. Wijayanti, L. Yuliati, and I. N. G. Wardana, “The role of 1.8-cineole addition on the change in triglyceride geometry and combustion characteristics of vegetable oils droplets,” Fuel, vol. 314, p. 122721, 2022, doi: 10.1016/j.fuel.2021.122721.
  44. E. Marlina, W. Wijayanti, L. Yuliati, and I. N. G. Wardana, “The role of pole and molecular geometry of fatty acids in vegetable oils droplet on ignition and boiling characteristics,” Renewable Energy, vol. 145, pp. 596–603, 2020.
  45. E. Marlina, M. Basjir, and R. D. Purwati, “The Response of Adding Nanocarbon to the Combustion Characteristic of Crude Coconut Oil (CCO) Droplets,” Automotive Experiences, vol. 5, no. 1, pp. 68–74, 2022, doi: 10.31603/ae.4954.
  46. M. Bhattacharyya, K. P. Shadangi, R. Purkayastha, P. Mahanta, and K. Mohanty, “Catalytic upgradation of pyrolytic products by catalytic pyrolysis of sawdust using a synthesized composite catalyst of NiO and Ni (II) aluminates,” Renewable Energy, vol. 221, p. 119658, 2024, doi: 10.1016/j.renene.2023.119658.
  47. S. Vellaiyan, “Optimization of plastic waste pyrolysis using carbon-metal oxide hybrid nanocomposite catalyst: Yield enhancement and energy resource potential,” Results in Engineering, vol. 23, p. 102520, 2024, doi: 10.1016/j.rineng.2024.102520.
  48. N. Harith, R. S. R. M. Hafriz, N. A. Arifin, E. S. Tan, A. Salmiaton, and A. H. Shamsuddin, “Catalytic co-pyrolysis of blended biomass – plastic mixture using synthesized metal oxide(MO)-dolomite based catalyst,” Journal of Analytical and Applied Pyrolysis, vol. 168, p. 105776, 2022, doi: 10.1016/j.jaap.2022.105776.
  49. N. Zhou et al., “Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production,” Chemical Engineering Journal, vol. 418, p. 129412, 2021, doi: 10.1016/j.cej.2021.129412.
  50. M. Chen et al., “Experimental investigation on gas-liquid–solid tri-phase product distributions during the simulated in-situ pyrolysis of tar-rich coal,” Fuel, vol. 381, p. 133465, 2025, doi: 10.1016/j.fuel.2024.133465.
  51. K. Pobłocki, M. Pawlak, J. Drzeżdżon, and D. Jacewicz, “Catalytic materials based on metals (ions) used in the upcycling of plastics and polymers into fuels and valuable chemicals as part of sustainable development,” Materials Science and Engineering: R: Reports, vol. 162, p. 100881, 2025, doi: 10.1016/j.mser.2024.100881.
  52. G. Martínez-Narro, S. Hassan, and A. N. Phan, “Chemical recycling of plastic waste for sustainable polymer manufacturing – A critical review,” Journal of Environmental Chemical Engineering, vol. 12, no. 2, p. 112323, 2024, doi: 10.1016/j.jece.2024.112323.
  53. B. Saha, S. Vedachalam, A. K. Dalai, S. Saxena, B. Dally, and W. L. Roberts, “Review on production of liquid fuel from plastic wastes through thermal and catalytic degradation,” Journal of the Energy Institute, vol. 114, p. 101661, 2024, doi: 10.1016/j.joei.2024.101661.
  54. B. Fekhar, L. Gombor, and N. Miskolczi, “Pyrolysis of chlorine contaminated municipal plastic waste: In-situ upgrading of pyrolysis oils by Ni/ZSM-5, Ni/SAPO-11, red mud and Ca(OH)2 containing catalysts,” Journal of the Energy Institute, vol. 92, no. 5, pp. 1270–1283, 2019, doi: 10.1016/j.joei.2018.10.007.
  55. R. A. A. Nugroho, A. F. Alhikami, and W.-C. Wang, “Thermal decomposition of polypropylene plastics through vacuum pyrolysis,” Energy, vol. 277, p. 127707, 2023, doi: 10.1016/j.energy.2023.127707.
  56. D. Liu et al., “Hydrodesulfurization and isomerization performance of model FCC naphtha over sulfided Co(Ni)-Mo/Y catalysts,” Chinese Journal of Chemical Engineering, 2024, doi: 10.1016/j.cjche.2024.10.001.
  57. M. A. Sayed, M. A. Abo El-Khair, A. A. Ragab, A. O. Abo El Naga, W. S. Gado, and A. S. Morshedy, “Optimizing n-heptane isomerization: The role of copper in enhancing the catalytic activity and selectivity of Pt and Cu-Pt/montmorillonite K10 catalysts,” Inorganic Chemistry Communications, vol. 172, p. 113693, 2025, doi: 10.1016/j.inoche.2024.113693.