Main Article Content

Abstract

Fuel efficiency in heavy-duty trucks in Indonesia faces significant challenges, while the current HDM-4 fuel consumption model has limitations in reflecting local conditions. This study calibrates the HDM-4 model using telematics data, engine speed modeling, aerodynamic simulations, and calibration factors. The novelty lies in updating parameters such as engine speed, vehicle frontal area, and calibration factors for engine power efficiency (Kpea) and rolling resistance (Kcr2) to account for tire-road interaction in Indonesian conditions. Data were collected from 5-axle trucks on the Tanjung Priok–Bandung toll road, analyzed using regression, Computational Fluid Dynamics (CFD) simulations, and non-parametric paired tests. Results show updated engine speed parameters (RPM_a0 = 680.11, RPM_a1 = -4.9031, RPM_a2 = 0.3858, RPM_a3 = -0.0028), a drag coefficient of 1.0556, and a frontal area of 8.2 m². Calibrating Kpea and Kcr2 (both 0.6) improved prediction accuracy, with no significant difference between predicted and observed data (p = 0.186). The enhanced HDM-4 model supports operational decisions, infrastructure planning, and sustainable transport policies, improving energy efficiency, reducing emissions, and boosting national logistics competitiveness.

Keywords

Fuel consumption HDM-4 Telematics Heavy-duty trucks Aerodynamics

Article Details

References

  1. A. Mahalana, L. Yang, T. Dallmann, P. Lestari, K. Maulana, and N. Kusuma, “Pengukuran emisi kendaraan bermotor real-world di Jakarta,Indonesia,” London, Nov. 2022.
  2. Department for Energy Security & Net Zero, “2023 Government Greenhouse Gas Conversion Factors for Company Reporting Methodology Paper for Conversion Factors Final Report 2,” London, 2023.
  3. European Environment Agency, “EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical guidance to prepare national emission inventories,” Luxembourg, 2019. doi: 10.2800/293657.
  4. E. Kadarsa, Hanafiah, B. B. Adhitya, M. Pataras, and A. Azari, “Comparison Analysis Operastional Cost of Vehicle (VOC) Between Kayu Agung-Palembang-Betung Toll Road Plan with Existing Road,” IOP Conference Series: Earth and Environmental Science, vol. 396, no. 1, p. 012034, Nov. 2019, doi: 10.1088/1755-1315/396/1/012034.
  5. S. Rizky Burhanudzaky and P. W. Nariendra, “Penentuan tarif ideal angkutan truk pt xyz berdasarkan biaya operasional kendaraan pada wilayah dki jakarta dan jawa barat,” in Prosiding Simposium Forum Studi Transportasi antar Perguruan Tinggi ke-24 Universitas Indonesia-Universitas Pembangunan Jaya, Jakarta: Forum Studi Transportasi antar Perguruan Tinggi , Apr. 2022, pp. 4–6.
  6. H. G. R. Kerali, J. B. Odoki, and E. E. Stannard, Overview of HDM-4. Highway Development and Management Series, 2nd ed., vol. 1. Paris: World Road Association PIARC, 2006.
  7. L. Trupia, T. Parry, L. C. Neves, and D. Lo Presti, “Rolling resistance contribution to a road pavement life cycle carbon footprint analysis,” The International Journal of Life Cycle Assessment, vol. 22, no. 6, pp. 972–985, Jun. 2017, doi: 10.1007/s11367-016-1203-9.
  8. J. Gao et al., “Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors,” Energy Conversion and Management, vol. 196, pp. 605–613, Sep. 2019, doi: 10.1016/j.enconman.2019.06.038.
  9. M. Zhou, H. Jin, and W. Wang, “A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing,” Transportation Research Part D: Transport and Environment, vol. 49, pp. 203–218, Dec. 2016, doi: 10.1016/j.trd.2016.09.008.
  10. Y. Chen, L. Zhu, J. Gonder, S. Young, and K. Walkowicz, “Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach,” Transportation Research Part C: Emerging Technologies, vol. 83, pp. 134–145, Oct. 2017, doi: 10.1016/j.trc.2017.08.003.
  11. N. L. H. Hien and A.-L. Kor, “Analysis and Prediction Model of Fuel Consumption and Carbon Dioxide Emissions of Light-Duty Vehicles,” Applied Sciences, vol. 12, no. 2, p. 803, Jan. 2022, doi: 10.3390/app12020803.
  12. J. Wang and H. A. Rakha, “Fuel consumption model for heavy duty diesel trucks: Model development and testing,” Transportation Research Part D: Transport and Environment, vol. 55, pp. 127–141, Aug. 2017, doi: 10.1016/j.trd.2017.06.011.
  13. M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Ecological Vehicle Control on Roads With Up-Down Slopes,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 783–794, Sep. 2011, doi: 10.1109/TITS.2011.2112648.
  14. I. Zaabar and K. Chatti, “Calibration of HDM-4 Models for Estimating the Effect of Pavement Roughness on Fuel Consumption for U.S. Conditions,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2155, no. 1, pp. 105–116, Jan. 2010, doi: 10.3141/2155-12.
  15. X. Jiao and M. Bienvenu, “Field Measurement and Calibration of HDM-4 Fuel Consumption Model on Interstate Highway in Florida,” International Journal of Transportation Science and Technology, vol. 4, no. 1, pp. 29–45, Mar. 2015, doi: 10.1260/2046-0430.4.1.29.
  16. K.-H. Ko et al., “An Economic Calibration Method for Fuel Consumption Model in HDM4,” Wireless Personal Communications, vol. 89, no. 3, pp. 959–975, Aug. 2016, doi: 10.1007/s11277-016-3353-2.
  17. F. Perrotta, T. Parry, L. C. Neves, T. Buckland, E. Benbow, and M. Mesgarpour, “Verification of the HDM-4 fuel consumption model using a Big data approach: A UK case study,” Transportation Research Part D: Transport and Environment, vol. 67, pp. 109–118, Feb. 2019, doi: 10.1016/j.trd.2018.11.001.
  18. M. Coyle, “Effects of Payload on the Fuel Consumption of Trucks,” 2007.
  19. O. D. D. Franzese, “Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Freight Trucks,” Oak Ridge, TN, Oct. 2011.
  20. J. Woodrooffe, “Reducing Truck Fuel Use and Emissions: Tires. Aerodynamics, Engine Efficiency, and Size and Weight Regulations,” Ann Arbor, MI, 2014.
  21. O. Delgado, F. Rodríguez, and R. Muncrief, “Fuel Efficiency Technology in European Heavy-Duty Vehicles: Baseline and Potential for the 2020-2030 Time Frame,” Berlin, Jul. 2017.
  22. H. J. Walnum and M. Simonsen, “Does driving behavior matter? An analysis of fuel consumption data from heavy-duty trucks,” Transportation Research Part D: Transport and Environment, vol. 36, pp. 107–120, May 2015, doi: 10.1016/j.trd.2015.02.016.
  23. C. R. Bennett and W. D. O. Paterson, A Guide to Calibration and Adaptation. Highway Development and Management Series, 1st ed., vol. 5. Paris: The World Road Association (PIARC), 2000.
  24. Badan Pusat Statistik, “Statistik Indonesia 2023,” Jakarta, 2023.
  25. Direktorat Jenderal Bina Marga, “Pedoman Desain Geometrik Jalan,” Jakarta, Dec. 2020.
  26. J. B. Odoki and H. G. R. Kerali, Analytical Framework and Model Descriptions. Highway Development and Management Series, 2nd ed., vol. 4. Paris: World Road Association PIARC, 2006.
  27. D. Noreland, “Semi-empirical model for timber truck speed profile and fuel consumption,” International Journal of Forest Engineering, 2024, doi: 10.1080/14942119.2024.2346881.
  28. R. Farzaneh, J. Johnson, R. Jaikumar, T. Ramani, and J. Zietsman, “Use of Vehicle Telematics Data to Characterize Drayage Heavy-Duty Truck Idling,” Transportation Research Record, vol. 2674, no. 11, pp. 542–553, Sep. 2020, doi: 10.1177/0361198120945990.
  29. SAE International Standard, “SAE J1939–71, Vehicle Application Layer - Surface Vehicle Recommended Practice,” 2016.
  30. L. Wang, J. Gonder, E. Wood, and A. Ragatz, “The Accuracy and Correction of Fuel Consumption from Controller Area Network Broadcast,” in SAE Technical Paper Series, SAE International, Nov. 2017. doi: 10.4271/2017-01-7005.
  31. Special Investigation Committee, “Investigation Report,” Aug. 2022.
  32. Y. Wang, Y. Zou, K. Henrickson, Y. Wang, J. Tang, and B. J. Park, “Google Earth elevation data extraction and accuracy assessment for transportation applications,” PLoS ONE, vol. 12, no. 4, Apr. 2017, doi: 10.1371/journal.pone.0175756.
  33. I. Ghozali, Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Semarang: Badan Penerbit Universitas Diponegoro, 2018.
  34. O. A. Montesinos López, A. Montesinos López, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. Colima: Springer International Publishing, 2022. doi: 10.1007/978-3-030-89010-0.
  35. C. R. Bennett and I. D. Greenwood, Modeling Road User and Environmental Effects in HDM-4. Highway Development and Management Series, 3rd ed., vol. 7. Paris: The World Road Association (PIARC), 2003.
  36. S. Lubis, C. A. Siregar, and F. Abdilah, “Simulation of air flow loss in triangle pipe construction,” IOP Conference Series: Materials Science and Engineering, vol. 821, no. 1, p. 012047, Apr. 2020, doi: 10.1088/1757-899X/821/1/012047.
  37. A. Tillman, David, B. Duong, Dao, N, and S. Harding, N, Solid Fuel Blending, vol. 7. Elsevier, 2012. doi: 10.1016/C2009-0-30636-4.
  38. I. Ramlan and N. Darlis, “Comparison between Solidworks and Ansys Flow Simulation on Aerodynamic Studies,” Journal of Design for Sustainable and Environment, vol. 2, no. 2, pp. 1–10, 2020.
  39. Y. Tominaga, “CFD simulations of turbulent flow and dispersion in built environment: A perspective review,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 249, Jun. 2024, doi: 10.1016/j.jweia.2024.105741.
  40. E. Mirmahdi, M. H. Karimi, A. Khoubrou, and S. A. Sajed, “The Effect of Aerodynamic Forces on Automotive Design and Reducing Fuel Consumption,” International Journal of Robotics and Automation, vol. 7, no. 1, pp. 36–41, 2021, doi: 10.37628/IJRA.
  41. S. Pal, S. M. H. Kabir, and M. M. M. Talukder, “Aerodynamic Analysis Of A Concept Car Model,” in International Conference on Mechanical Engineering and Renewable Energy 2015, Chittagong: ICMERE2015, Nov. 2015.
  42. S. M. R. Hassan, T. Islam, M. Ali, and M. Q. Islam, “Numerical Study on Aerodynamic Drag Reduction of Racing Cars,” Procedia Engineering, vol. 90, pp. 308–313, 2014, doi: 10.1016/j.proeng.2014.11.854.
  43. J. V Deshpande, U. Naik-Nimbalkar, and I. Dewan, Nonparametric Statistics: theory and methods). New Jersey: World Scientific, 2017.
  44. C. Keramydas et al., “Characterization of Real-World Pollutant Emissions and Fuel Consumption of Heavy-Duty Diesel Trucks with Latest Emissions Control,” Atmosphere, vol. 10, no. 9, p. 535, Sep. 2019, doi: 10.3390/atmos10090535.
  45. K. Matti, E. Kimmo, and N. Nils-Olof, “Heavy-Duty Vehicles: Safety, Environmental Impacts And New Technology ‘Rastu,’” Espoo, Jun. 2009.
  46. R. Rajamani, Vehicle Dynamics and Control, 2nd ed., vol. 2nd Edition. in Mechanical Engineering Series, vol. 2nd Edition. Boston, MA: Springer US, 2012. doi: 10.1007/978-1-4614-1433-9.
  47. R. Tarakka, “Kajian Kontrol Aktif Separasi Aliran Turbulen Pada Aerodinamika Bluff Body Model Kendaraan,” Universitas Indonesia, Depok, 2012.
  48. A. L. Altamira, “Determinación del consumo de combustible de vehículos pesados sobre distintos tipos de pavimento,” Pontificia Universidad Católica de Chile, Santiago, 2003.
  49. B. Sharpe and R. Muncrief, “Real-World Fuel Consumption Of Heavy-Duty Vehicles In The United States, China, And The European Union Acknowledgements,” Washington DC, Jan. 2015.