Main Article Content

Abstract

Areca leaf sheaths are underutilized waste but have a high cellulose content of 72.27%, so they can be utilized for bioethanol production. This research aims to utilize areca leaf waste for bioethanol production through acid (HNO3 5%) and alkaline (NaOH 10%) pretreatment processes, enzyme hydrolysis, and fermentation. Pretreatment using 5% HNO3 and 10% NaOH solutions is carried out because it can break down the lignin bond and release it from cellulose and hemicellulose fibers. The enzymatic hydrolysis process uses cellulase enzymes at 37 °C for 48 hours to produce glucose. Glucose content analysis uses the DNS method and UV-Vis spectrophotometry instruments because it is accurate and can detect glucose in low concentrations. The fermentation process is carried out using Saccharomyces cerevisiae as a fermentation microorganism because it has high efficiency in bioethanol production for a duration of 3, 5, and 7 days. Based on the results of the analysis, pretreatment with HNO3 5%  solution reduced the level of lignin in areca leaf sheaths by 2.31%. Meanwhile, pretreatment using a 10% NaOH solution lowered lignin levels to 1.81%. Reduced sugar levels after hydrolysis after pretreatment with HNO3 5% and NaOH 10% were 25.08 mg/mL and 16.37 mg/mL, respectively. The highest concentration of bioethanol in the 5% HNO3 pretreatment was achieved on the 7th day at 16.75%, while that of 10% NaOH on the 5th day was 14.75%. This difference is influenced by the availability of fermentable sugars, where HNO3 substrates take longer to decompose by S. cerevisiae than NaOH substrates. Based on the analysis, the bioethanol contains ethanol, thus the areca leaf sheath fibre feedstock has the potential to assist in the advancement of a sustainable biorefinery process that can reduce dependence on fossil fuels and increase added value.

Keywords

Areca leaf sheath Pretreatment Hydrolysis Fermentation Bioethanol

Article Details

References

  1. Z. Guo et al., “Extraction and identification of bioactive compounds from areca nut ( Areca catechu L.) and potential for future applications,” Food Frontiers, vol. 5, no. 5, pp. 1909–1932, Sep. 2024, doi: 10.1002/fft2.443.
  2. M. R. Ridho, D. S. Nawawi, I. Juliana, and W. Fatriasari, “The kraft lignin characteristics of areca leaf sheath isolated by phosphoric acid,” Bioresource Technology Reports, vol. 23, p. 101569, Sep. 2023, doi: 10.1016/j.biteb.2023.101569.
  3. S. Das, A. Chaudhuri, and A. K. Singha, “Characterization of lignocellulosic fibres extracted from agricultural biomass: arecanut leaf sheath,” The Journal of The Textile Institute, vol. 112, no. 8, pp. 1224–1231, Aug. 2021, doi: 10.1080/00405000.2020.1809319.
  4. D. G. K. Dissanayake, D. Weerasinghe, T. D. R. Perera, M. M. A. L. Bandara, S. K. T. Thathsara, and S. Perera, “A Sustainable Transparent Packaging Material from the Arecanut Leaf Sheath,” Waste and Biomass Valorization, vol. 12, no. 10, pp. 5725–5742, Oct. 2021, doi: 10.1007/s12649-021-01382-5.
  5. L. K. Dewi, N. M. Z. Miranda, H. F. Rabbani, and W. O. C. Nirwana, “Comparative study of single and multiple pre-treatments of rice straw on cellulose content for bioethanol production,” Jurnal Rekayasa Proses, vol. 18, no. 2, pp. 144–153, 2024, doi: 10.22146/jrekpros.13187.
  6. S. Rulianah, S. Adani Putri, Prayitno, L. Candra Dewi, and A. Zaky Aldillah, “Production of bioethanol from sugarcane bagasse using cellulase enzyme,” E3S Web of Conferences, vol. 605, p. 01008, Jan. 2025, doi: 10.1051/e3sconf/202560501008.
  7. A. Thygesen, P. Tsapekos, M. Alvarado-Morales, and I. Angelidaki, “Valorization of municipal organic waste into purified lactic acid,” Bioresource Technology, vol. 342, p. 125933, Dec. 2021, doi: 10.1016/j.biortech.2021.125933.
  8. Erdiwansyah et al., “Prospects for renewable energy sources from biomass waste in Indonesia,” Case Studies in Chemical and Environmental Engineering, vol. 10, p. 100880, Dec. 2024, doi: 10.1016/j.cscee.2024.100880.
  9. K. P. Candra, K. Kasma, I. Ismail, M. Marwati, W. Murdianto, and Y. Yuliani, “Optimization Method for Bioethanol Production from Giant Cassava (Manihot esculenta var. Gajah) Originated from East Kalimantan,” Indonesian Journal of Chemistry, vol. 19, no. 1, p. 176, Jan. 2019, doi: 10.22146/ijc.31141.
  10. K. Kusmiyati, H. Hadiyanto, and A. Fudholi, “Treatment updates of microalgae biomass for bioethanol production: A comparative study,” Journal of Cleaner Production, vol. 383, p. 135236, Jan. 2023, doi: 10.1016/j.jclepro.2022.135236.
  11. R. Kaviani, “Economic Review and Environmental Benefits of Bioethanol,” Journal of Chemis Letters, vol. 2, pp. 144–149, 2021, doi: 10.22034/jchemlett.2022.321579.1045.
  12. B. Jiang et al., “Lignin‐Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications,” Advanced Science, vol. 10, no. 9, Mar. 2023, doi: 10.1002/advs.202206055.
  13. M. Michelin, E. Ximenes, M. de L. T. M. Polizeli, and M. R. Ladisch, “Inhibition of enzyme hydrolysis of cellulose by phenols from hydrothermally pretreated sugarcane straw,” Enzyme and Microbial Technology, vol. 166, p. 110227, May 2023, doi: 10.1016/j.enzmictec.2023.110227.
  14. H. S. Hafid, F. N. Omar, J. Zhu, and M. Wakisaka, “Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment,” Carbohydrate Polymers, vol. 260, p. 117789, May 2021, doi: 10.1016/j.carbpol.2021.117789.
  15. P. Basera, S. Chakraborty, and N. Sharma, “Lignocellulosic biomass: insights into enzymatic hydrolysis, influential factors, and economic viability,” Discover Sustainability, vol. 5, no. 1, p. 311, Oct. 2024, doi: 10.1007/s43621-024-00543-5.
  16. M. Abdou Alio, O.-C. Tugui, L. Rusu, A. Pons, and C. Vial, “Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery,” Bioresource Technology, vol. 310, p. 123412, Aug. 2020, doi: 10.1016/j.biortech.2020.123412.
  17. Taufikurahman, Sherly, Jessica, and W. O. Delimanto, “Production of Bioethanol from Napier grass: Comparison in Pre-treatment and Fermentation Methods,” IOP Conference Series: Earth and Environmental Science, vol. 520, no. 1, p. 012005, Jun. 2020, doi: 10.1088/1755-1315/520/1/012005.
  18. A. Topaloğlu, Ö. Esen, B. Turanlı-Yıldız, M. Arslan, and Z. P. Çakar, “From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications,” Journal of Fungi, vol. 9, no. 10, p. 984, Sep. 2023, doi: 10.3390/jof9100984.
  19. S. Kolo and Y. Sine, “Bioethanol Production from Dryland Sorghum Pulp with Preliminary Treatment of Microwave Irradiation,” Jurnal Saintek Lahan Kering, vol. 2, no. 2 SE, Dec. 2019, [Online]. Available: https://savana-cendana.id/index.php/SLK/article/view/855
  20. D. Premjet and S. Premjet, “Enhanced Sugar and Bioethanol Production from Broom Grass via NaOH-Autoclave Pretreatment,” Polymers, vol. 17, no. 3, p. 266, Jan. 2025, doi: 10.3390/polym17030266.
  21. P. J. Van Soest, J. B. Robertson, and B. A. Lewis, “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition,” Journal of Dairy Science, vol. 74, no. 10, pp. 3583–3597, Oct. 1991, doi: 10.3168/jds.S0022-0302(91)78551-2.
  22. B. Ramalingappa, H. M. Siddesh, and G. L. Aruna, “Bio Ethanol Production from Sugarcane Bagasse Agriculture Waste using Saccharomyces cerevisiae and its Quantification by GC-MS,” Research Journal of Agricultural Sciences, vol. 15, no. 2, pp. 331–335, 2024.
  23. B. Godin et al., “Revue bibliographique sur les méthodes d’analyse des polysaccharides structuraux des biomasses lignocellulosiques,” Biotechnology, Agronomy and Society and Environment, vol. 15, no. 1, pp. 165–182, 2011.
  24. S. Supranto, A. Tawfiequrrahman, and D. E. Yunanto, “Sugarcane bagasse conversion to high refined cellulose using nitric acid, sodium hydroxide and hydrogen peroxide as the delignificating agents,” Journal of Engineering Science and Technology, vol. 10, pp. 35–46, 2015.
  25. Z. Zulnazri, D. Lestari, L. Hakim, R. Dewi, and S. Sulhatun, “Kajian Ekstraksi Selulosa dari Kulit Pinang dengan Menggunakan Larutan NaOH,” Jurnal Teknologi Kimia Unimal, vol. 11, no. 2, pp. 193–206, Nov. 2022, doi: 10.29103/jtku.v11i2.7846.
  26. J. Sitinjak, H. Nasution, and M. Lubis, “The Effect of Delignification Time on % Yield of Alpha-cellulose from Bamboo Fiber (Bambuseae) Properties,” in Proceedings of the 1st International MIPAnet Conference on Science and Mathematics, SCITEPRESS - Science and Technology Publications, 2019, pp. 190–195. doi: 10.5220/0010138500002775.
  27. Z. Zulnazri, M. I. Adha, and R. Dewi, “Experimental Study of Cellulose Extraction From Oil Palm Empty Fruits Bunches,” Jurnal IPTEK, vol. 26, no. 1, pp. 7–14, May 2022, doi: 10.31284/j.iptek.2022.v26i1.2353.
  28. A. M. Alhasan, D. Kuang, A. B. Mohammad, and R. R. Sharma-Shi, “Combined Effect of Nitric Acid and Sodium Hydroxide Pretreatments on Enzymatic Saccharification of Rubber Wood (Heavea brasiliensis),” International Journal of Chemical Technology, vol. 2, no. 1, pp. 12–20, Dec. 2009, doi: 10.3923/ijct.2010.12.20.
  29. C. Cai et al., “Changing the role of lignin in enzymatic hydrolysis for a sustainable and efficient sugar platform,” Renewable and Sustainable Energy Reviews, vol. 183, p. 113445, Sep. 2023, doi: 10.1016/j.rser.2023.113445.
  30. R. S. Abolore, S. Jaiswal, and A. K. Jaiswal, “Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review,” Carbohydrate Polymer Technologies and Applications, vol. 7, p. 100396, Jun. 2024, doi: 10.1016/j.carpta.2023.100396.
  31. E. H. Triyani Fajriutami, Widya Fatriasari, “Effects of Alkaline Pretreatment of Sugarcane Bagasse on Pulp Characterization and Reducing Sugar Production,” Jurnal Riset Industri, vol. 10, no. 3, pp. 147–161, 2016.
  32. C. Kundu, S. P. Samudrala, M. A. Kibria, and S. Bhattacharya, “One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production,” Scientific Reports, vol. 11, no. 1, p. 11183, May 2021, doi: 10.1038/s41598-021-90667-9.
  33. D. Allouch, M. Popa, V. I. Popa, G. Lisa, A. C. Puitel, and H. Nasri, “Characterization of Components Isolated from Algerian Apricot Shells (Prunus Armeniaca L.),” Cellulose Chemistry and Technology, vol. 53, no. 9–10, pp. 851–859, Nov. 2019, doi: 10.35812/CelluloseChemTechnol.2019.53.82.
  34. P. K. Adapa, L. G. Schonenau, T. Canam, and T. Dumonceaux, “Quantitative Analysis of Lignocellulosic Components of Non-Treated and Steam Exploded Barley, Canola, Oat and Wheat Straw Using Fourier Transform Infrared Spectroscopy,” Journal of Agricultural Science and Technology, vol. 1, pp. 177–188, 2011.
  35. F. Wang et al., “Comparative Study on Pretreatment Processes for Different Utilization Purposes of Switchgrass,” ACS Omega, vol. 5, no. 35, pp. 21999–22007, Sep. 2020, doi: 10.1021/acsomega.0c01047.
  36. P. Poddar, M. Asadulah Asad, M. Saiful Islam, S. Sultana, H. Parvin Nur, and A. M. S. Chowdhury, “Mechanical and Morphological Study of Arecanut Leaf Sheath (ALS), Coconut Leaf Sheath (CLS) and Coconut Stem Fiber (CSF),” Advanced Material Science, vol. 1, no. 2, 2016, doi: 10.15761/AMS.1000113.
  37. R. Y. Arundina et al., “Synthesis and Characterization of Activated Carbon from Lignocellulosic Biomass: Oil Palm Empty Fruit Bunches and Mahogany Sawdust,” Jurnal Bahan Alam Terbarukan, vol. 10, no. 2, pp. 81–88, Dec. 2021, doi: 10.15294/jbat.v10i2.33488.
  38. S. S. Qureshi, S. Nizamuddin, J. Xu, T. Vancov, and C. Chen, “Cellulose nanocrystals from agriculture and forestry biomass: synthesis methods, characterization and industrial applications,” Environmental Science and Pollution Research, vol. 31, no. 49, pp. 58745–58778, Sep. 2024, doi: 10.1007/s11356-024-35127-3.
  39. B. Sunkar and B. Bhukya, “An Approach to Correlate Chemical Pretreatment to Digestibility Through Biomass Characterization by SEM, FTIR and XRD,” Frontiers in Energy Research, vol. 10, May 2022, doi: 10.3389/fenrg.2022.802522.
  40. I. Alva Royyan, W. Rochmawati, S. Dwi Nurherdiana, R. Abdullah, T. Gunawan, and M. Jumain Jalil, “Isolation and Characterization of Cellulose from Cocoa Shell Waste : A Green Chemical Implementation Approach,” Malaysian Journal of Chemistry, vol. 26, no. 4, pp. 157–166, 2024.
  41. R. Rodhiyah, A. Rahmatulloh, and R. C. Firdaus, “Perbandingan Analisis Parameter Moisture Content Flavour Powder Menggunakan Moisture Analyzer dan Oven,” DISTILAT: Jurnal Teknologi Separasi, vol. 10, no. 1, pp. 287–295, Mar. 2024, doi: 10.33795/distilat.v10i1.4877.
  42. F. N. Salsabila, N. Widiarti, W. Windarti, P. P. Jayawardana, and P. Listyorini, “Analysis of Quality and Metal Contamination in Consumption of Iodized Salt to Guarantee the Quality of Salt Circulating in Society,” Indonesian Journal of Chemical Science, vol. 12, no. 2, pp. 174–184, 2023.
  43. T. Sumiati, S. Yuningtyas, and L. E. B. Haloho, “Delignifikasi lignoselulosa daun nanas (Ananas comosus (L) Merr) untuk produksi alfa selulosa,” Pharmamedica Journal, vol. 8, no. 2, pp. 130–137, 2023, doi: 10.47219/ath.v8i2.301.
  44. K. C. C. de Carvalho, S. R. Montoro, M. O. H. Cioffi, and H. J. C. Voorwald, “Polyhydroxyalkanoates and Their Nanobiocomposites With Cellulose Nanocrystals,” in Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, Elsevier, 2016, pp. 261–285. doi: 10.1016/B978-0-323-39408-6.00012-1.
  45. A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chemistry, vol. 15, no. 3, p. 550, 2013, doi: 10.1039/c2gc36364j.
  46. X. Guo et al., “An evaluation of different pretreatment methods of hot-air drying of garlic: Drying characteristics, energy consumption and quality properties,” LWT, vol. 180, p. 114685, Apr. 2023, doi: 10.1016/j.lwt.2023.114685.
  47. R. N. Al-Qthanin et al., “Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck],” Agricultural Water Management, vol. 298, p. 108862, Jun. 2024, doi: 10.1016/j.agwat.2024.108862.
  48. K. Kusyanto, “The Influence of Solvent Volume on Raw Material and Cooking Time in the Delignification Process of Paper Making from Kepok Banana Peel Pulp,” Journal of Research and Technology, vol. 9, no. 2, pp. 253–260, Dec. 2023, doi: 10.55732/jrt.v9i2.1048.
  49. S. Rahmawati, M. Yerizam, and E. Dewi, “Konversi Ampas Tebu dan Sabut Kelapa Menjadi Bioetanol dengan Metode Hidrolisis Enzimatik,” Jurnal Pendidikan Tambusai, vol. 7, no. 3, 2023, doi: 10.31004/jptam.v7i3.9996.
  50. C. Sindhuwati et al., “Review: Potensi Tandan Kosong Kelapa Sawit sebagai Bahan Baku Pembuatan Bioetanol dengan Metode Fed Batch pada Proses Hidrolisis,” Jurnal Teknik Kimia dan Lingkungan, vol. 5, no. 2, pp. 128–144, Oct. 2021, doi: 10.33795/jtkl.v5i2.224.
  51. U. Dziekońska-Kubczak, J. Berłowska, P. Dziugan, P. Patelski, K. Pielech-Przybylska, and M. Balcerek, “Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production,” Energies, vol. 11, no. 8, p. 2153, Aug. 2018, doi: 10.3390/en11082153.
  52. D. F. Nury, M. Z. Luthfi, and T. Widjaja, “Pengaruh Kombinasi Pretreatment, Hidrolisis, dan Fermentasi Terhadap Produksi Bioetanol dari Limbah Padat Aren,” Jurnal Integrasi Proses, vol. 13, no. 2, 2024, doi: 10.62870/jip.v13i2.28466.
  53. Z. F. Khaira, E. Yenie, and S. R. Muria, “Pembuatan Bioetanol Dari Limbah Tongkol Jagung Menggunakan Proses Simultaneous Sacharificatian And Fermentation (SSF) Dengan Variasi Konsentrasi Enzim Dan Waktu Fermentasi,” Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, vol. 2, no. 2, pp. 1–23, 2015.
  54. K. Kusmiyati, S. T. Anarki, S. W. Nugroho, R. Widiastutik, and H. Hadiyanto, “Effect of Dilute Acid and Alkaline Pretreatments on Enzymatic Saccharfication of Palm Tree Trunk Waste for Bioethanol Production,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 14, no. 3, pp. 705–714, Dec. 2019, doi: 10.9767/bcrec.14.3.4256.705-714.
  55. D. A. Anggorowati, S. Sriliani, A. Artiyani, H. Setyawati, and K. J, “Enzimatic Hydrolysis Process for Increasing Glucose Levels from Coconut Husk Waste,” Journal of Sustainable Technology and Applied Science (JSTAS), vol. 2, no. 2, pp. 1–6, Nov. 2021, doi: 10.36040/jstas.v2i2.3579.
  56. S. K. Bhatia, S.-H. Kim, J.-J. Yoon, and Y.-H. Yang, “Current status and strategies for second generation biofuel production using microbial systems,” Energy Conversion and Management, vol. 148, pp. 1142–1156, Sep. 2017, doi: 10.1016/j.enconman.2017.06.073.
  57. Y. H. Pratiwi, O. Ratnayani, and I. N. Wirajana, “Comparison of Reducing Sugar Test Methods in Determining the Activity of a-L-arabinofuranosidase with Coconut Janur Substrate (Cocos nucifera),” Jurnal Kimia, p. 134, Jul. 2018, doi: 10.24843/JCHEM.2018.v12.i02.p07.
  58. O. A. H. Al-Bedak, R. S. Sakr, and A. M. AL-Kolaibe, “The microbial amylases: an overview with practical consequences and applications,” Journal of Microbiology & Experimentation, vol. 10, no. 4, pp. 130–134, Sep. 2022, doi: 10.15406/jmen.2022.10.00363.
  59. N. N. Deshavath, G. Mukherjee, V. V. Goud, V. D. Veeranki, and C. V. Sastri, “Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural,” International Journal of Biological Macromolecules, vol. 156, pp. 180–185, Aug. 2020, doi: 10.1016/j.ijbiomac.2020.04.045.
  60. K. Naimah and M. R. Zen, “Pengaruh Preparasi Ubi Kayu dengan Metode Bahan Baku Langsung dan Tidak Langsung terhadap Produksi Bioetanol,” Journal of Science and Applicative Technology, vol. 5, no. 2, p. 325, Jul. 2021, doi: 10.35472/jsat.v5i2.428.
  61. J. S. Siregar, A. Ahmad, and S. Z. Amraini, “Effect of Time Fermentation and Saccharomyces Cerevisiae Concentration for Bioethanol Production from Empty Fruit Bunch,” Journal of Physics: Conference Series, vol. 1351, no. 1, p. 012104, Nov. 2019, doi: 10.1088/1742-6596/1351/1/012104.
  62. W. Pratiwi and S. Ni Made, “Article Reviews: Bioethanol Production from Biomass Waste using Fermentation with the Assistance of Yeast,” Journal of Biobased Chemicals, vol. 3, no. 2, pp. 96–106, Dec. 2023, doi: 10.19184/jobc.v3i2.421.
  63. N. Salwa, C. Eka, P. Gunawan, F. Danisa, R. Nilnalmuna, and N. Rohmah, “Bioethanol Production from Sago Waste as Renewable Energy: A Review,” Journal of Clean Technology, vol. 1, no. 1, pp. 29–38, 2024, doi: 10.15294/joct.v1i1.1666.
  64. H. Setiawan and E. Kusumo, “Pembuatan bioetanol dari jerami padi dengan bantuan enzim selulase dari jamur tiram,” Indonesian Journal of Chemical Science, vol. 4, no. 2, 2015, doi: 10.15294/ijcs.v4i2.6177.
  65. S. Mohan, E. Kato, J. K. Drennen, and C. A. Anderson, “Refractive Index Measurement of Pharmaceutical Solids: A Review of Measurement Methods and Pharmaceutical Applications,” Journal of Pharmaceutical Sciences, vol. 108, no. 11, pp. 3478–3495, Nov. 2019, doi: 10.1016/j.xphs.2019.06.029.
  66. O. M. Buraimoh et al., “Sustainable generation of bioethanol from sugarcane wastes by Streptomyces coelicolor strain COB KF977550 isolated from a tropical estuary,” Scientific African, vol. 11, p. e00709, Mar. 2021, doi: 10.1016/j.sciaf.2021.e00709.
  67. E. Ariyani, E. Kusumo, and Supartono, “Produksi Bioetanol dari Jerami Padi (Oryza sativa L),” Indonesian Journal of Chemical Science, vol. 2, no. 2, pp. 167–172, 2013, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ijcs