Main Article Content

Abstract

Structural strength testing of buses using static vertical load has not previously been explored to validate the structural integrity of bus frames. In this study, the static vertical load method was employed to validate the structural strength of the Universitas of Indonesia electric bus, which utilizes two different materials SS400 for the lower frame and Aluminum Alloy 6061 for the upper frame. Finite Element Analysis (FEA) was conducted to identify critical areas on both the lower and upper frames. The stress values in the simulation were also obtained at the same location as the strain gauge placements in the experiment. Experimental vertical load testing was carried out by incrementally applying a load of 1000 kg up to the equivalent of 70 passengers, with an additional dynamic coefficient of 30% resulting in a maximum load of 6850 kg. Strain measurements were taken using 20 strain gauges on the lower frame and 8 on the upper frame. The experimental result showed the highest stress occurred at strain gauge no. 9 on the lower frame, measuring 78.10 MPa, and 15.32 MPa on the upper frame under 6850 kg load. The comparison between the simulation and experimental results reveals an 18% deviation.  Nevertheless, both methods indicate the same critical area of the structure. The stress distribution indicated that the central deck area of the lower frame, where passengers sit and stand, experienced the highest loads. On the upper frame, significant stress was observed in the area where the air conditioning system is mounted. These findings demonstrate that static vertical load testing can be effectively used to validate the structural strength and stress distribution of electric buses, particularly in areas subject to concentrated loading.

Keywords

Vertical load Finite element analysis Strain gauge Bus frame Electric bus

Article Details

References

  1. D. Satrijo, O. Kurdi, I. Haryanto, T. Prahasto, A. Widodo, and A. Eros, “Analisa Statik dan Optimasi Size Chassis Bus Medium dengan Metode Elemen Hingga,” ROTASI, vol. 22, no. 4, pp. 272–281, Nov. 2020, doi: 10.14710/rotasi.22.4.272-281.
  2. D. D. A. Fakhri and I. N. Sutantra, “Analisis Kekuatan Chassis Terhadap Impact pada Kendaraan Bus Mitsubishi FUSO FE 84G BC dengan Menggunakan Metode Elemen Hingga,” Jurnal Teknik ITS, vol. 8, no. 1, 2019, doi: 10.12962/j23373539.v8i1.42493.
  3. L. K. Lim, Z. A. Muis, H. Hashim, and W. S. Ho, “Design of Energy Storage System through Bus Energy Storage Cascade Analysis (BESCA),” IOP Conference Series. Earth and Environmental Science, vol. 1395, no. 1, p. 12025, Sep. 2024, doi: 10.1088/1755-1315/1395/1/012025.
  4. H. D. Anggara, “Revitalizing vehicle innovation: Exploring electric car chassis structures through finite element analysis,” Innovation in Engineering, vol. 1, no. 1, pp. 50–59, 2024, doi: 10.58712/ie.v1i1.6.
  5. R. A. D. Purnomoasri and D. Handayani, “Analisis dan mitigasi emisi gas buang akibat transportasi (studi kasus kabupaten magetan),” ENVIRO: Journal of Tropical Environmental Research, vol. 24, no. 1, pp. 29–36, 2022, doi: 10.20961/enviro.v24i1.65043.
  6. A. La Scala, P. Loprieno, D. Foti, and M. La Scala, “The Mechanical Response of Structural Elements in Enclosed Structures during Electric Vehicle Fires: A Computational Study,” Energies, vol. 16, no. 21, p. 7233, Oct. 2023, doi: 10.3390/en16217233.
  7. A. Sudrajat, A. Widodo, and O. Kurdi, “Analisis Kekuatan Sasis Bus Konvensional Yang Digunakan Sebagai Sasis Bus Listrik Menggunakan Metode Elemen Hingga,” Jurnal Teknik Mesin, vol. 11, no. 1, pp. 100–101, Jan. 2023, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jtm/article/view/37950
  8. D. Wang, C. Xie, Y. Liu, W. Xu, and Q. Chen, “Multi-objective Collaborative Optimization for the Lightweight Design of an Electric Bus Body Frame,” Automotive Innovation, vol. 3, no. 3, pp. 250–259, 2020, doi: 10.1007/s42154-020-00105-1.
  9. I. D. Gunawan, I. Haryanto, and G. D. Haryadi, “Analisis Struktur Chassis Semi-Monocoque Bus Listrik Medium Dengan Metode Elemen Hingga,” Jurnal Teknik Mesin, vol. 9, no. 2, pp. 273–282, Apr. 2021, doi: https://ejournal3.undip.ac.id/index.php/jtm/article/view/35784.
  10. D. W. Karmiadji, M. Gozali, M. Setiyo, T. Raja, and T. A. Purnomo, “Comprehensive Analysis of Minibuses Gravity Center: A Post-Production Review for Car Body Industry,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 31–40, Jul. 2021, doi: 10.31603/mesi.5250.
  11. N. Nazaruddin et al., “Development of Electric Vehicle (ev)-Bus Chassis with Reverse Engineering Method Using Static Analysis,” Eastern-European Journal of Enterprise Technologies, vol. 2, no. July 2017, pp. 15–22, 2021, doi: 10.15587/1729-4061.2021.219928.
  12. Z. Yang, B. Deng, M. Deng, and G. Sun, “A Study on Finite Element Analysis of Electric Bus Frame for Lightweight Design,” MATEC Web Conf., vol. 175, 2018, doi: 10.1051/matecconf/201817503049.
  13. A. Armansyah, A. Keshavarzi, A. Kolahdooz, F. Ferdyanto, and M. D. Mardhani, “Optimization of air suspension system for improved ride and handling performance in road vehicles dynamic,” Mechanical Engineering for Society and Industry, vol. 4, no. 2, pp. 277–293, Dec. 2024, doi: 10.31603/mesi.11634.
  14. G. Gustomo and S. Anis, “Analisis kekuatan rangka bodi bus listrik MD12E Perseroan Terbatas Mobil Anak Bangsa dengan metode elemen hingga,” JMEL: Journal of Mechanical Engineering Learning, vol. 9, no. 1, 2020.
  15. B. Walczak, P. Malaca, D. Michalak, and W. J. Staszewski, “Measurements of loads acting on an electric bus in urban traffic,” Procedia Structural Integrity, vol. 47, pp. 723–731, 2023, doi: 10.1016/j.prostr.2023.07.047.
  16. W. Aryadi, A. Setiyawan, Kriswanto, and A. Rizky, “Design and static testing of electric vehicle chassis trike front-wheel drive,” IOP Conference Series: Earth and Environmental Science, vol. 969, no. 1, p. 12022, 2022, doi: 10.1088/1755-1315/969/1/012022.
  17. O. Kurdi and R. A. Rahman, “Finite element analysis of road roughness effect on stress distribution of heavy duty truck chassis,” International Journal of Technology, vol. 1, no. 1, pp. 57–64, 2010, doi: 10.14716/ijtech.v1i1.1002.
  18. M. Gozali et al., “Experimental and Finite Element Study of Rollover Protection Structure for a 22-Seat Man-hauler Superstructure Vehicle,” Automotive Experiences, vol. 7, no. 3, pp. 389–405, 2024, doi: 10.31603/ae.11380.
  19. S. Wicaksono, M. Rizka Faisal Rahman, S. Mihradi, and I. Nurhadi, “Finite element analysis of bus rollover test in accordance with UN ECE R66 standard,” Journal of Engineering and Technological Sciences, vol. 49, no. 6, pp. 799–810, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.6.7.
  20. R. Yang, W. Zhang, S. Li, M. Xu, W. Huang, and Z. Qin, “Finite Element Analysis and Optimization of Hydrogen Fuel Cell City Bus Body Frame Structure,” Applied Sciences, vol. 13, no. 19, p. 10964, Oct. 2023, doi: 10.3390/app131910964.
  21. S. Mihradi, A. Dhaniswara, S. Wicaksono, and A. I. Mahyuddin, “Bus Superstructure Reinforcement for Safety Improvement against Rollover Accidents,” Journal of Engineering and Technological Sciences, vol. 54, no. 2, 2022, doi: 10.5614/j.eng.technol.sci.2022.54.2.6.
  22. P. Keangin, P. Chawengwanicha, N. Wimala, and T. Nakbanpotkul, “Structural analysis of three-dimensional finite element model to design multifunction wheelchair for patients,” IOP Conference Series: Materials Science and Engineering, vol. 1137, no. 1, p. 12054, 2021, doi: 10.1088/1757-899X/1137/1/012054.
  23. J. E. Bringas, Hand Book of Comparative World Steel Standard s. 2004.
  24. M. Kutz, Mechanical engineers’ handbook, volume 1: Materials and engineering mechanics, vol. 1. John Wiley & Sons, 2015.
  25. D. W. Karmiadji, M. Gozali, A. Anwar, H. Purnomo, M. Setiyo, and R. Junid, “Evaluation of Operational Loading of the Light-Rail Transit (LRT) in Capital Region, Indonesia,” Automotive Experiences, vol. 3, no. 3, pp. 104–114, 2020, doi: 10.31603/ae.v3i3.3882.
  26. O. D. Risqy, “Analisa Kekuatan Desain Struktur Rangka City Bus Menggunakan Finite Elemen Analysis,” JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering), vol. 10, no. 1, pp. 1–6, Aug. 2025, doi: 10.32486/jeecae.v10i1.769.
  27. O. Zamzam, A. A. Ramzy, M. Abdelaziz, T. Elnady, and A. A. A. El-Wahab, “Structural performance evaluation of electric vehicle chassis under static and dynamic loads,” Scientific Reports, vol. 15, no. 1, p. 5168, 2025, doi: 10.1038/s41598-025-86924-w.