Main Article Content

Abstract

Philippine Tung (Reutealis trisperma) is an indigenous nut that is a relatively new feedstock for producing biodiesel in Indonesia. The nature of NaOH base catalyst and reaction temperature plays an important role in the method of biodiesel production. This study aimed to assess the effects of different percentages of NaOH base catalyst and reaction temperature on physicochemical properties of Philippine Tung biodiesel. Transesterification process was carried out by reacting Philippine Tung oil with methanol and NaOH catalyst. NaOH weight to oil weight was at 0.25%, 0.5%,0.75% and 1%, the reaction temperature set up were at 60°C and 70°C, while methanol-oil molar ratio was set at 6:1. Yield, acid value, saponification value, density, and viscosity of biodiesel were significantly influenced by NaOH catalyst concentrations. Meanwhile reaction temperature had no effect on the yield and viscosity. Philippine Tung biodiesel produced using 0.25% NaOH catalyst met the SNI 04-7182-2015 biodiesel standard of the properties investigated in this study (yield: 96.18%, acid value: 0.466 mg KOH/g, saponification value: 200.083 mg KOH/g, density: 0.889 g/mL, viscosity: 5.276 cSt).

Keywords

Biodiesel Philippine Tung Transesterification Physicochemical properties

Article Details

References

  1. H. van der Vossen and B. . Umali, Plant Resources of South-East Asia: Vegetable oils and fats, no. 14. Backhuys Publishers, 2001.
  2. D. Pranowo, M. Syakir, B. Prastowo, M. Herman, A. Aunillah, and S. Sumanto, “Pembuatan Biodiesel Dari Kemiri Sunan dan Pemanfaatan Hasil Samping.” p. 124, 2014.
  3. A. Kolakoti, M. Setiyo, and B. Waluyo, “Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 22–30, 2021, doi: 10.31603/mesi.5320.
  4. M. Setiyo, D. Yuvenda, and O. D. Samuel, “The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis,” Indonesian Journal of Science and Technology, vol. 6, no. 3, pp. 469–490, 2021, doi: 10.17509/ijost.v6i3.38430.
  5. H. M. Rachimoellah, D. A. Resti, A. Zibbeni, and I. W. Susila, “Production of Biodiesel through Transesterification of Avocado ( Persea gratissima ) Seed Oil Using Base Catalyst,” Jurnal Teknik Mesin, vol. 11, no. 2, pp. 85–90, 2009.
  6. A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Springer, 2008.
  7. S. D. Anggraini, “Rekayasa Produksi Biodiesel Dari Minyak Kemiri Sunan (Reutialis Trisperma Oil) Sebagai Alternatif Bahan Bakar Mesin Diesel,” JATI UNIK : Jurnal Ilmiah Teknik dan Manajemen Industri, vol. 2, no. 1, p. 1, 2018, doi: 10.30737/jatiunik.v2i1.272.
  8. H. Santoso, I. Kristianto, and A. Setyadi, “Pembuatan Biodiesel Menggunakan Katalis Basa Heterogen Berbahan Dasar Kulit Telur,” 2013.
  9. M. Agarwal, G. Chauhan, S. P. Chaurasia, and K. Singh, “Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, no. 1, pp. 89–94, 2012, doi: 10.1016/j.jtice.2011.06.003.
  10. H. Holilah et al., “The potential of Reutealis trisperma seed as a new non-edible source for biodiesel production,” Biomass Conversion and Biorefinery, vol. 5, pp. 347–353, 2015, doi: 10.1007/s13399-014-0150-6.
  11. A. Widyasanti, S. Nurjanah, and T. M. . Sinatria, “Pengaruh Suhu dalam Proses Transesterifikasi pada Pembuatan Biodiesel Kemiri Sunan (Reautealis trisperma),” Jurnal Material dan Energi Indonesia, vol. 07, no. 01, pp. 9–18, 2017.
  12. S. Nurjanah, D. S. Lestari, A. Widyasanti, and S. Zain, “The effect of NaOH concentration and length of trans-esterification time on characteristic of FAME from Reutealis trisperma (Kemiri Sunan),” International Journal on Advanced Science, Engineering and Information Technology, vol. 5, no. 1, pp. 52–56, 2015, doi: 10.18517/ijaseit.5.1.483.
  13. S. . Anggraini, T. . Utami, and D. Prasetyoko, “Sintesis dan Karakterisasi Biodiesel Dari Minyak Kemiri Sunan (Reutealis trisperma Oil) Dengan Katalis KOH (Variasi Konsentrasi Katalis),” Jurnal MIPA, vol. 37, no. 2, pp. 105–114, 2013.
  14. G. Garusti, A. D. Khuluq, J. Hartono, P. D. Riajaya, and R. D. Purwati, “Karakteristik Biodiesel Kemiri Sunan dengan Katalis NaOH dan KOH,” Buletin Tanaman Tembakau, Serat & Minyak Industri, vol. 12, no. 2, p. 78, 2020, doi: 10.21082/btsm.v12n2.2020.78-85.
  15. G. R. Sari, M. A. Satrio, R. Mulyaningsih, I. A. Irene, and V. Paramita, “Utilization of Alurities trisperma Oil as Biodiesel,” Journal of Vocational Studies on Applied Research, vol. 2, no. 1, pp. 16–22, 2020, doi: 10.14710/jvsar.2.1.2020.16-22.
  16. H. Haryono, Y. B. Yuliyati, A. R. Noviyanti, M. Rizal, and S. Nurjanah, “Karakterisasi Biodiesel Dari Minyak Kemiri Sunan Dengan Katalis Heterogen Silika Terimpregnasi Kalsium Oksida (CaO/SiO),” Penelitian Hasil Hutan, vol. 38, no. 1, pp. 11–24, 2020, doi: 10.20886/jphh.2020.38.1.11-24.
  17. R. Hartono and W. Pamungkas, “The Effect of NaOH Catalyst Ratio on Biodiesel Manufacturing from Off Grade CPO,” World Chemical Engineering Journal, vol. 4, no. 2, pp. 56–61, 2020.
  18. S. Supriyadi, P. P. Purwanto, and H. Hermawan, “Enhancing the yield and quality of Kemiri Sunan crude oil by preliminary extraction of feedstock,” Journal of Physics: Conference Series, vol. 1295, no. 1, 2019, doi: 10.1088/1742-6596/1295/1/012011.
  19. U. R. Shehu-Ibrahim Akinfalabi, I. A. Nehdi, T. S. Y. Choong, H. M. Sbihi, and M. M. Gewik, “Optimization and blends study of heterogeneous acid catalyst-assisted esterification of palm oil industry by-product for biodiesel production,” R. Soc. open sci., vol. 7, no. 1, 2020, doi: 10.1098/rsos.191592.
  20. M. Mittelbach and C. Remschmidt, Biodiesel : the comprehensive handbook. 2004.
  21. Silviana and L. Buchori, “Efek Penyimpanan Biodiesel Berdasarkan Studi Kajian Degradasi Biodiesel CPO,” Reaktor, vol. 15, no. 3, pp. 148–153, 2015, doi: 10.14710/reaktor.15.3.148-153.
  22. D. Hendra, “Pembuatan Biodiesel Dari Biji Kemiri Sunan (Making Biodiesel of Blanco Seed),” Jurnal Penelitian Hasil Hutan, vol. 32, no. 1, pp. 37–45, 2014.
  23. G. A. Ewunie, J. Morken, O. I. Lekang, and Z. D. Yigezu, “Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review,” Renewable and Sustainable Energy Reviews, vol. 137, no. August 2019, p. 110500, 2021, doi: 10.1016/j.rser.2020.110500.
  24. G. R. Kannan, K. R. Balasubramanian, S. P. Sivapirakasam, and R. Anand, “Studies on biodiesel production and its effect on di diesel engine performance, emission and combustion characteristics,” International Journal of Ambient Energy, vol. 32, no. 4, pp. 179–193, 2011, doi: 10.1080/01430750.2011.625722.
  25. Y. Sandhy, H. A, and R. Rusdianasari, “Effect of Variation of Catalyst Concentration in the Producing of Biodiesel from Crude Palm Oil using Induction Heater,” Asian Journal of Applied Research for Community Development and Empowermen, vol. Vol 3 (201, no. February, pp. 1–5, 2019, doi: 10.29165/ajarcde.v3i1.19.
  26. D. G. Woo and T. H. Kim, “Effect of kinematic viscosity variation with blended-oil biodiesel on engine performance and exhaust emission in a power tiller engine,” Environmental Engineering Research, vol. 25, no. 6, pp. 946–959, 2020, doi: 10.4491/eer.2019.358.
  27. M. Okuyama, Y., Shimokoji, D., Sakurai, T., and Maruyama, “Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability,” SAE Technical Paper 2011-01-1247, 2011, 2011, doi: https://doi.org/10.4271/2011-01-1247.
  28. D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010, doi: 10.1016/j.apenergy.2009.10.006.
  29. A. Prihanto and T. A. B. Irawan, “Pengaruh Temperatur, Konsentrasi Katalis Dan Rasio Molar Metanol-Minyak Terhadap Yield Biodisel Dari Minyak Goreng Bekas Melalui Proses Netralisasi-Transesterifikasi,” Metana, vol. 13, no. 1, p. 30, 2018, doi: 10.14710/metana.v13i1.11340.
  30. I. Worapun, K. Pianthong, and P. Thaiyasuit, “Synthesis of biodiesel by two-step transesterification from crude jatropha curcus L.oil using ultrasonic irradiation assisted,” KKU Engineering Journal, vol. 3, no. 3, pp. 169–179, 2010.
  31. Dianursanti, M. Delaamira, and S. B. Muharam, “Effect of Reaction Temperature on Biodiesel Production from Chlorella vulgaris using CuO/Zeolite as Heterogeneous Catalyst,” IOP Conference Series: Earth and Environmental Science, vol. 55 (2017), 2017, doi: doi:10.1088/1755-1315/55/1/012033.
  32. R. B. Istiningrum, T. Aprianto, and F. L. U. Pamungkas, “Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst,” AIP Conference Proceedings, vol. 1911, no. December, 2017, doi: 10.1063/1.5016024.
  33. A. B. M. S. Hossain and M. A. Mazen, “Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process,” Australian Journal of Crop Science, vol. 4, no. 7, pp. 550–555, 2010.
  34. J. Salimon, B. M. Abdullah, and N. Salih, “Saponification of jatropha curcas seed oil: Optimization by D-optimal design,” International Journal of Chemical Engineering, vol. 2012, pp. 1–7, 2012, doi: 10.1155/2012/574780.
  35. J. Duhovnik et al., “Exhaust emissions and engine performance analysis of a marine diesel engine fuelledwith Parinari polyandra biodiesel–diesel blends,” Fuel, vol. 6, no. 1, pp. 1–6, 2020, doi: 10.1080/20421338.2015.1094236.