Main Article Content

Abstract

The synthesis of MCM-48 containing surfactants (CTAB and Triton X-100), ZnO, and CaO aimed to find a potential heterogeneous catalyst in the esterification of Calophyllum inophyllum oil to biodiesel. This research is important in the production of biodiesel from vegetable oils with more than 2% free fatty acids (FFA), such as Calophyllum inophyllum oil using heterogeneous catalysts. Synthesis of heterogeneous catalysts, MCM-48 and ZnO-MCM-48-CaO (ZMC), using the hydrothermal method at various calcination temperatures was conducted to find the optimum calcination temperature for the reaction. The activity of the catalyst in the reaction was determined using acid-base titration methods and GC-MS. The MCM-48 catalyst calcined at 650 °C (MCM-48/650) had a catalytic activity of 35.74% and was selective for converting linoleic acid in Calophyllum inophyllum oil to biodiesel. In addition, this catalyst was also capable of cracking the compounds contained in Calophyllum inophyllum oil into suitable hydrocarbons for biodiesel. In the esterification of vegetable oils, four heterogeneous catalysts (MCM-48/550, ZMC/550, ZMC/650, and ZMC/750) had the potential to replace conventional catalysts (H2SO4), particularly in the generation of biodiesel from Calophyllum inophyllum oil.

Keywords

Free fatty acid Heterogeneous catalyst Mesoporous silica Brønsted acid Silanol

Article Details

References

  1. S. Ramalingam, E. Murugesan, P. Ganesan, and S. Rajendiran, “Characteristics analysis of julifora biodiesel derived from different production methods,” Fuel, vol. 280, p. 118579, 2020, doi: 10.1016/j.fuel.2020.118579.
  2. S. Chen, Q. Zhang, P. Andrews-Speed, and B. Mclellan, “Quantitative assessment of the environmental risks of geothermal energy: A review,” Journal of environmental management, vol. 276, p. 111287, 2020, doi: 10.1016/j.jenvman.2020.111287.
  3. B. Xu, J. Xu, and Z. Chen, “Heat transfer study in solar collector with energy storage,” International Journal of Heat and Mass Transfer, vol. 156, p. 119778, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119778.
  4. B. Stürmer, D. Leiers, V. Anspach, E. Brügging, D. Scharfy, and T. Wissel, “Agricultural biogas production: A regional comparison of technical parameters,” Renewable Energy, vol. 164, pp. 171–182, 2021, doi: 10.1016/j.renene.2020.09.074.
  5. C. Valderrama, V. Quintero, and V. Kafarov, “Energy and water optimization of an integrated bioethanol production process from molasses and sugarcane bagasse: A Colombian case,” Fuel, vol. 260, p. 116314, 2020, doi: 10.1016/j.fuel.2019.116314.
  6. M. A. A. Farid, A. M. Roslan, M. A. Hassan, M. Y. Hasan, M. R. Othman, and Y. Shirai, “Net energy and techno-economic assessment of biodiesel production from waste cooking oil using a semi-industrial plant: A Malaysia perspective,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100700, 2020, doi: 10.1016/j.seta.2020.100700.
  7. S. M. A. Rahman, I. M. R. Fattah, S. Maitra, and T. M. I. Mahlia, “A ranking scheme for biodiesel underpinned by critical physicochemical properties,” Energy Conversion and Management, vol. 229, p. 113742, 2021, doi: 10.1016/j.enconman.2020.113742.
  8. N. A. Fauzan, E. S. Tan, F. L. Pua, and G. Muthaiyah, “Physiochemical properties evaluation of Calophyllum inophyllum biodiesel for gas turbine application,” South African Journal of Chemical Engineering, vol. 32, pp. 56–61, 2020, doi: 10.1016/j.sajce.2020.02.001.
  9. N. Rajendran and B. Gurunathan, “Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction,” Industrial Crops and Products, vol. 162, p. 113273, 2021, doi: 10.1016/j.indcrop.2021.113273.
  10. A. Arumugam and P. Sankaranarayanan, “Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil,” Renewable Energy, vol. 153, pp. 1272–1282, 2020, doi: 10.1016/j.renene.2020.02.101.
  11. R. Wahyuni, C. Handoko, and R. Agustarini, “Preliminary study on the flowering and fruiting behaviors of nyamplung (Calophyllum inophyllum Linn.),” Indonesian Journal of Forestry Research, vol. 9, no. 1, pp. 39–48, 2012, doi: 10.20886/ijfr.2012.9.1.39-48.
  12. A. Arumugam and V. Ponnusami, “Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview,” Renewable Energy, vol. 131, pp. 459–471, 2019, doi: 10.1016/j.renene.2018.07.059.
  13. H. W. Aparamarta, S. Gunawan, H. Husin, B. Azhar, and H. T. Aditya, “The effect of high oleic and linoleic fatty acid composition for quality and economical of biodiesel from crude Calophyllum inophyllum oil (CCIO) with microwave-assisted extraction (MAE), batchwise solvent extraction (BSE), and combination of MAE–BSE meth,” Energy Reports, vol. 6, pp. 3240–3248, 2020, doi: 10.1016/j.egyr.2020.11.197.
  14. T. F. Adepoju, “Synthesis of biodiesel from Annona muricata–Calophyllum inophyllum oil blends using calcined waste wood ash as a heterogeneous base catalyst,” MethodsX, vol. 8, p. 101188, 2021, doi: 10.1016/j.mex.2020.101188.
  15. J. Liu, Y. Nan, and L. L. Tavlarides, “Continuous production of ethanol-based biodiesel under subcritical conditions employing trace amount of homogeneous catalysts,” Fuel, vol. 193, pp. 187–196, 2017, doi: 10.1016/j.fuel.2016.12.058.
  16. E. G. Al-Sakkari et al., “Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study,” Fuel, vol. 279, p. 118519, 2020, doi: 10.1016/j.fuel.2020.118519.
  17. S. Pandian, A. S. Saravanan, P. Sivanandi, M. Santra, and V. K. Booramurthy, “Application of heterogeneous acid catalyst derived from biomass for biodiesel process intensification: a comprehensive review,” Refining Biomass Residues for Sustainable Energy and Bioproducts, pp. 87–109, 2020, doi: 10.1016/B978-0-12-818996-2.00004-1.
  18. A. Bušić et al., “Recent trends in biodiesel and biogas production,” Food technology and biotechnology, vol. 56, no. 2, p. 152, 2018, doi: 10.17113/ftb.56.02.18.5547.
  19. O. Ogunkunle and N. A. Ahmed, “A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines,” Energy Reports, vol. 5, pp. 1560–1579, 2019, doi: 10.1016/j.egyr.2019.10.028.
  20. E. Dahdah et al., “Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment,” Renewable Energy, vol. 146, pp. 1242–1248, 2020, doi: 10.1016/j.renene.2019.06.171.
  21. I. Ahmad and R. Dhar, “Sulfonic acid-functionalized solid acid catalyst in esterification and transesterification reactions,” Catalysis Surveys from Asia, vol. 21, no. 2, pp. 53–69, 2017, doi: 10.1007/s10563-017-9226-1.
  22. V. SathyaSelvabala, D. K. Selvaraj, J. Kalimuthu, P. M. Periyaraman, and S. Subramanian, “Two-step biodiesel production from Calophyllum inophyllum oil: optimization of modified β-zeolite catalyzed pre-treatment,” Bioresource technology, vol. 102, no. 2, pp. 1066–1072, 2011, doi: 10.1016/j.biortech.2010.08.052.
  23. O. O. Ayodele and F. A. Dawodu, “Production of biodiesel from Calophyllum inophyllum oil using a cellulose-derived catalyst,” biomass and bioenergy, vol. 70, pp. 239–248, 2014, doi: 10.1016/j.biombioe.2014.08.028.
  24. L. Kolo, F. Firdaus, and P. Taba, “The use of MCM-48-nCaO AS catalyst in esterification reaction of nyamplung seed oil (Calophyllum inophyllum L.),” Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), vol. 8, no. 20, pp. 1–10, 2015, doi: 10.20956/ica.v8i2.2466.
  25. H. Juwono, T. Triyono, S. Sutarno, E. Triwahyuni, I. Ulfin, and F. Kurniawan, “Production of Biodiesel from Seed Oil of Nyamplung (Calophyllum inophyllum) by Al-MCM-41 and Its Performance in Diesel Engine,” Indonesian Journal of Chemistry, vol. 17, no. 2, pp. 316–321, 2017, doi: 10.22146/ijc.24180.
  26. T. M. M. Marso, C. S. Kalpage, and M. Y. Udugala-Ganehenege, “Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil,” Fuel, vol. 199, pp. 47–64, 2017, doi: 10.1016/j.fuel.2017.01.004.
  27. A. Arumugam and V. Ponnusami, “Optimization of recovery of silica from sugarcane leaf ash and Ca/SBA-15 solid base for transesterification of Calophyllum inophyllum oil,” Journal of Sol-Gel Science and Technology, vol. 74, no. 1, pp. 132–142, 2015, doi: 10.1007/s10971-014-3586-z.
  28. L. U. O. Nan, C. A. O. Yang, L. I. Jin, G. U. O. Wei, and Z. ZHAO, “Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil,” Journal of Fuel Chemistry and Technology, vol. 44, no. 1, pp. 76–83, 2016, doi: 10.1016/S1872-5813(16)30007-X.
  29. W.-K. Chen, H.-H. Tseng, M.-C. Wei, E.-C. Su, and I.-C. Chiu, “Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content,” International Journal of hydrogen energy, vol. 39, no. 34, pp. 19555–19562, 2014, doi: 10.1016/j.ijhydene.2014.08.154.
  30. A. Al-Saadi, B. Mathan, and Y. He, “Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil,” Chemical Engineering Research and Design, vol. 162, pp. 238–248, 2020, doi: 10.1016/j.cherd.2020.08.018.
  31. G. Joshi et al., “Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides,” Energy Conversion and Management, vol. 96, pp. 258–267, 2015, doi: 10.1016/j.enconman.2015.02.061.
  32. M. Kaur, R. Malhotra, and A. Ali, “Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production,” Renewable Energy, vol. 116, pp. 109–119, 2018, doi: 10.1016/j.renene.2017.09.065.
  33. A. F. Lee, J. A. Bennett, J. C. Manayil, and K. Wilson, “Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification,” Chemical Society Reviews, vol. 43, no. 22, pp. 7887–7916, 2014, doi: 10.1039/C4CS00189C.
  34. J. Wang, G. Wang, Z. Zhang, G. Ouyang, and Z. Hao, “Effects of mesoporous silica particle size and pore structure on the performance of polymer-mesoporous silica mixed matrix membranes,” RSC Advances, vol. 11, no. 58, pp. 36577–36586, 2021, doi: 10.1039/d1ra05125c.
  35. P. Taba, H. Natsir, S. Fauziah, and M. Ismail, “Adsorpsi Ion Cd(II) oleh Kitosan-Silika Mesopori MCM-48,” Universitas Hasanudin, 2012.
  36. M. Pirouzmand, M. M. Anakhatoon, and Z. Ghasemi, “One-step biodiesel production from waste cooking oils over metal incorporated MCM-41; positive effect of template,” Fuel, vol. 216, pp. 296–300, 2018, doi: 10.1016/j.fuel.2017.11.138.
  37. F. Rajabi and R. Luque, “An efficient renewable-derived surfactant for aqueous esterification reactions,” RSC Advances, vol. 4, no. 10, pp. 5152–5155, 2014, doi: 10.1039/c3ra45757e.
  38. F. Rajabi and R. Luque, “Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterification reactions for biofuels production,” Molecular Catalysis, vol. 498, p. 111238, 2020, doi: 10.1016/j.mcat.2020.111238.
  39. A. B. Fadhil, A. M. Aziz, and M. H. Al-Tamer, “Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification,” Energy Conversion and Management, vol. 108, pp. 255–265, 2016, doi: 10.1016/j.enconman.2015.11.013.
  40. D. O. Onukwuli, L. N. Emembolu, C. N. Ude, S. O. Aliozo, and M. C. Menkiti, “Optimization of biodiesel production from refined cotton seed oil and its characterization,” Egyptian Journal of Petroleum, vol. 26, no. 1, pp. 103–110, 2017, doi: 10.1016/j.ejpe.2016.02.001.
  41. M. C. G. Souza, M. F. de Oliveira, A. T. Vieira, A. M. de Faria, and A. C. F. Batista, “Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability,” Renewable Energy, vol. 163, pp. 368–374, 2021, doi: 10.1016/j.renene.2020.08.073.
  42. M. Y. Chang, E.-S. Chan, and C. P. Song, “Biodiesel production catalysed by low-cost liquid enzyme Eversa® Transform 2.0: Effect of free fatty acid content on lipase methanol tolerance and kinetic model,” Fuel, vol. 283, p. 119266, 2021, doi: 10.1016/j.fuel.2020.119266.
  43. P. Taba, P. Budi, A. A. Gau, Y. Hala, I. W. Sutapa, and J. Manga, “Mesoporous silica modified with amino group (NH2-MCM-48) as adsorbent of Ag (I) and Cr (III) in water,” Rasayan J. Chem, vol. 14, no. 1, pp. 204–211, 2021, doi: 10.31788/RJC.2021.1415963.
  44. Y.-T. Wang, Z. Fang, and F. Zhang, “Esterification of oleic acid to biodiesel catalyzed by a highly acidic carbonaceous catalyst,” Catalysis Today, vol. 319, pp. 172–181, 2019, doi: 10.1016/j.cattod.2018.06.041.
  45. Y. Xia and R. Mokaya, “A study of the behaviour of mesoporous silicas in OH/CTABr/H 2 O systems: phase dependent stabilisation, dissolution or semi-pseudomorphic transformation,” Journal of Materials Chemistry, vol. 13, no. 12, pp. 3112–3121, 2003, doi: 10.1039/b305404g.
  46. A. K. Basumatary, R. Vinoth Kumar, K. Pakshirajan, and G. Pugazhenthi, “Removal of trivalent metal ions from aqueous solution via cross-flow ultrafiltration system using zeolite membranes,” Journal of Water Reuse and Desalination, vol. 7, no. 1, pp. 66–76, 2017, doi: 10.2166/wrd.2016.211.
  47. T. Vrålstad, G. Øye, M. Stöcker, and J. Sjöblom, “Synthesis of comparable Co-MCM-48 and Co-MCM-41 materials containing high cobalt contents,” Microporous and mesoporous materials, vol. 104, no. 1–3, pp. 10–17, 2007, doi: 10.1016/j.micromeso.2006.06.006.
  48. Y. Ding, C. Zhao, Y. Li, Z. Ma, and X. Lv, “Effect of calcination temperature on the structure and catalytic performance of the cu-mcm-41 catalysts for the synthesis of dimethyl carbonate,” Química Nova, vol. 41, no. 10, pp. 1156–1161, 2018, doi: 10.21577/0100-4042.20170291.
  49. N. T. Nguyen and V. A. Nguyen, “Synthesis, Characterization, and Photocatalytic Activity of ZnO Nanomaterials Prepared by a Green, Nonchemical Route,” Journal of Nanomaterials, vol. 2020, pp. 1–8, 2020, doi: 10.1155/2020/1768371.
  50. X. Li, W. Chen, Y. Tang, and L. Li, “Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization,” Chemosphere, vol. 206, pp. 615–621, 2018, doi: 10.1016/j.chemosphere.2018.05.066.
  51. J. C. K. Lam et al., “Vibrational spectroscopy of low-k/ultra-low-k dielectric materials on patterned wafers,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 5, p. 51513, 2011, doi: 10.1116/1.3625099.
  52. A. Patel and D. Pithadia, “Low temperature synthesis of bio-fuel additives via valorisation of glycerol with benzaldehyde as well as furfural over a novel sustainable catalyst, 12-tungstosilicic acid anchored to ordered cubic nano-porous MCM-48,” Applied Catalysis A: General, vol. 602, p. 117729, 2020, doi: 10.1016/j.apcata.2020.117729.
  53. D. Jamshidi and M. R. Sazegar, “Antibacterial activity of a novel biocomposite chitosan/graphite based on zinc-grafted mesoporous silica nanoparticles,” International Journal of Nanomedicine, vol. 15, p. 871, 2020, doi: 10.2147/IJN.S234043.
  54. M. R. Sazegar, A. Dadvand, and A. Mahmoudi, “Novel protonated Fe-containing mesoporous silica nanoparticle catalyst: excellent performance cyclohexane oxidation,” RSC advances, vol. 7, no. 44, pp. 27506–27514, 2017, doi: 10.1039/c7ra02280h.
  55. P. Taba, P. Budi, and A. Y. Puspitasari, “Adsorption of heavy metals on amine-functionalized MCM-48,” in IOP conference series: materials science and engineering, 2017, vol. 188, no. 1, p. 12015, doi: 10.1088/1757-899x/188/1/012015.
  56. D. Guliani, A. Sobti, and A. P. Toor, “Comparative study on Graphene Oxide and MCM-48 based catalysts for esterification reaction,” Materials Today: Proceedings, vol. 41, pp. 805–811, 2021, doi: 10.1016/j.matpr.2020.08.751.
  57. P. Taba, R. D. P. Mustafa, L. M. Ramang, and A. H. Kasim, “Adsorption of Pb2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48,” in Journal of Physics: Conference Series, 2018, vol. 979, no. 1, p. 12058, doi: 10.1088/1742-6596/979/1/012058.
  58. H. Aghaei et al., “Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery,” Ceramics International, vol. 40, no. 5, pp. 7355–7362, 2014, doi: 10.1016/j.ceramint.2013.12.079.
  59. R. Taheri, N. Bahramifar, M. R. Zarghami, H. Javadian, and Z. Mehraban, “Nanospace engineering and functionalization of MCM-48 mesoporous silica with dendrimer amines based on [1, 3, 5]-triazines for selective and pH-independent sorption of silver ions from aqueous solution and electroplating industry wastewater,” Powder Technology, vol. 321, pp. 44–54, 2017, doi: 10.1016/j.powtec.2017.08.022.
  60. M. Zdujić et al., “Synthesis of CaOSiO2 compounds and their testing as heterogeneous catalysts for transesterification of sunflower oil,” Advanced Powder Technology, vol. 30, no. 6, pp. 1141–1150, 2019, doi: 10.1016/j.apt.2019.03.009.
  61. I. Klapiszewska, A. Parus, Ł. Ławniczak, T. Jesionowski, Ł. Klapiszewski, and A. Ślosarczyk, “Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures,” Cement and Concrete Composites, vol. 124, p. 104250, 2021, doi: 10.1016/j.cemconcomp.2021.104250.
  62. H. Helmiyati and R. P. Suci, “Nanocomposite of cellulose-ZnO/SiO2 as catalyst biodiesel methyl ester from virgin coconut oil,” in AIP Conference Proceedings, 2019, vol. 2168, no. 1, p. 20063, doi: 10.1063/1.5132490.
  63. N. A. Al-Tayyar, A. M. Youssef, and R. R. Al-Hindi, “Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products,” Food Packaging and Shelf Life, vol. 25, p. 100523, 2020, doi: 10.1016/j.fpsl.2020.100523.
  64. Z. Chu, C. A. Dreiss, and Y. Feng, “Smart wormlike micelles,” Chemical Society Reviews, vol. 42, no. 17, pp. 7174–7203, 2013, doi: 10.1039/c3cs35490c.
  65. T. Kimura, K. Kuroda, Y. Sugahara, and K. Kuroda, “Esterification of the silanol groups in the mesoporous silica derived from kanemite,” Journal of Porous Materials, vol. 5, no. 2, pp. 127–132, 1998, doi: 10.1023/A:1009641304742.
  66. Z. Talha et al., “Al-Rich ordered mesoporous silica SBA-15 materials: synthesis, surface characterization and acid properties,” Catalysis Letters, vol. 147, no. 8, pp. 2116–2126, 2017, doi: 10.1007/s10562-017-2103-8.
  67. A. F. Alhikami, C.-E. Yao, and W.-C. Wang, “A study of the spray ignition characteristics of hydro-processed renewable diesel, petroleum diesel, and biodiesel using a constant volume combustion chamber,” Combustion and Flame, vol. 223, pp. 55–64, 2021, doi: 10.1016/j.combustflame.2020.09.033.
  68. J. Zhang, Y. Guo, D. Pau, K. Li, K. Xie, and Y. Zou, “Pyrolysis kinetics and determination of organic components and N-alkanes yields of Karamay transformer oil using TG, FTIR and Py-GC/MS analyses,” Fuel, vol. 306, p. 121691, 2021, doi: 10.1016/j.fuel.2021.121691.