Main Article Content

Abstract

The advent of biofuel as a fossil petroleum substitute has been a revolutionary concept in the realm of combustion, but it lacks some qualities that, if addressed, could improve physio-chemical properties and promote energy sustainability. Recently, introducing nanoparticles (NPs) as an additive in fuel for combustion engines has become an effective practice particularly in the automobile industry, to optimize combustion efficiency and minimize emissions. Previous researchers discovered that adding NPs into biodiesel fuel improved overall engine operation performance. Thus, the objective of the research is to summarize existing research findings on nanoparticles effects on fuel properties and engine performance. The paper investigates biofuels, bio-fuel generation classifications, nano-fuel stability, performance, and limitations, as well as current research on the influence of NPs on combustion fuel properties and engine efficiency. Prior to this, researchers have discovered that employing NPs with appropriate additives and concentrations with optimal solubility significantly reduced emissions. In comparison to basic biofuel, adding CeO2 NPs to biofuel boosted brake thermal efficiency (BTE) for low and high operation by 4.1 and 12.02%, respectively. Carbon II Oxide and unburnt hydrocarbon emissions were reduced by 16.13 and 17.59%, respectively, in comparison to pure biofuel under C20-D80 + CeO2 20 ppm. However, due to the biofuel's oxygen concentration, CO2 and NOx emission reductions were not as significant. The findings indicate that utilizing a single bio-fuel generates minimal effective power, yet by incorporating nanoparticles optimizes the operation. Furthermore, future direction of the related work will be discussed particularly on the potential benefits of incorporating NPs in fuel.

Keywords

Bio-fuel Biomass Nanoparticles Combustion emission Sustainable

Article Details

References

  1. B. Rajesh Kumar and S. Saravanan, “Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed di diesel engine fueled with pentanol/diesel blends,” Fuel, vol. 160, pp. 217–226, 2015, doi: 10.1016/j.fuel.2015.07.089.
  2. A. Praveen, G. L. N. Rao, and B. Balakrishna, “Performance and emission characteristics of a diesel engine using Calophyllum inophyllum biodiesel blends with TiO2 nanoadditives and EGR,” Egypt. J. Pet., vol. 27, no. 4, pp. 731–738, 2018.
  3. P. S. Nigam and A. Singh, “Production of liquid biofuels from renewable resources,” Prog. Energy Combust. Sci., vol. 37, no. 1, pp. 52–68, 2011, doi: 10.1016/j.pecs.2010.01.003.
  4. H. Gima and T. Yoshitake, “A comparative study of energy security in Okinawa prefecture and the state of Hawaii,” Evergreen, vol. 3, no. 2, pp. 36–44, 2016, doi: 10.5109/1800870.
  5. J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, “Biofuels: Environment, technology and food security,” Renew. Sustain. Energy Rev., vol. 13, no. 6–7, pp. 1275–1287, 2009, doi: 10.1016/j.rser.2008.08.014.
  6. H. Akamine, M. Mitsuhara, and M. Nishida, “Developments of coal-fired power plants: Microscopy study of Fe-Ni based heat-resistant alloy for efficiency improvement,” Evergreen, vol. 3, no. 2, pp. 45–53, 2016, doi: 10.5109/1800871.
  7. R. Muhammad and S. Adityosulindro, “Biosorption of Brilliant Green Dye from Synthetic Wastewater by Modified Wild Algae Biomass,” Evergreen, vol. 9, no. 1, pp. 133–140, 2022, doi: 10.5109/4774228.
  8. R. A. Rouf, M. A. Hakim Khan, K. M. Ariful Kabir, and B. B. Saha, “Energy management and heat storage for solar adsorption cooling,” Evergreen, vol. 3, no. 2, pp. 1–10, 2016, doi: 10.5109/1800866.
  9. T. Bridgwater, “Biomass for energy,” J. Sci. Food Agric., vol. 86, no. 12, pp. 1755–1768, 2006, doi: 10.1002/jsfa.2605.
  10. S. Rezania, M. Ponraj, M. F. M. Din, A. R. Songip, F. M. Sairan, and S. Chelliapan, “The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview,” Renew. Sustain. Energy Rev., vol. 41, pp. 943–954, 2015, doi: 10.1016/j.rser.2014.09.006.
  11. S. M. Palash, M. A. Kalam, H. H. Masjuki, B. M. Masum, I. M. Rizwanul Fattah, and M. Mofijur, “Impacts of biodiesel combustion on NOx emissions and their reduction approaches,” Renew. Sustain. Energy Rev., vol. 23, no. x, pp. 473–490, 2013, doi: 10.1016/j.rser.2013.03.003.
  12. A. Gupta, “Building a Green Home Using Local Resources and Sustainable Technology in Jammu Region - A Case Study,” Energy Procedia, vol. 115, pp. 59–69, 2017, doi: 10.1016/j.egypro.2017.05.007.
  13. S. A. Pratiwi, Nasruddin, A. Zulys, F. Yulia, and N. Muhadzib, “Preliminary Study of Bio-Metal Organic Frameworks (Bio-MOFs) Based Chromium-Citric Acid for CO2Adsorption Application,” Evergreen, vol. 8, no. 4, pp. 829–834, 2021, doi: 10.5109/4742128.
  14. A. Sule, Z. A. Latiff, M. A. Abbas, I. Veza, and A. C. Opia, “Recent Advances in Diesel-Biodiesel Blended with Nano-Additive as Fuel in Diesel Engines: A Detailed Review,” Automot. Exp., vol. 5, no. 2, pp. 182–216, 2022, doi: 10.31603/ae.6352.
  15. A. A. S. Gheidan, M. A. Wahid, F. A. Munir, and A. C. Opia, “Feasibility Study Of Bio-Fuel As A Sustainable Product Of Biomass: An Overview Of Its Fundamentals, Application And Environmental Impact,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 88, no. 2, pp. 106–122, 2021, doi: 10.37934/arfmts.88.2.106122.
  16. A. Bahadar and M. Bilal Khan, “Progress in energy from microalgae: A review,” Renew. Sustain. Energy Rev., vol. 27, no. November, pp. 128–148, 2013, doi: 10.1016/j.rser.2013.06.029.
  17. G. Joshi, J. K. Pandey, S. Rana, and D. S. Rawat, “Challenges and opportunities for the application of biofuel,” Renew. Sustain. Energy Rev., vol. 79, no. May, pp. 850–866, 2017, doi: 10.1016/j.rser.2017.05.185.
  18. J. Sentanuhady, G. P. S. G. Atmaja, and M. A. Muflikhun, “Challenges of Biofuel Applications in Industrial and Automotive: A Review,” J. Eng. Sci. Technol. Rev., vol. 14, no. 4, pp. 119–134, 2021, doi: 10.25103/jestr.144.16.
  19. N. A. Pambudi, V. S. Pramudita, M. K. Biddinika, and S. Jalilinasrabady, “So Close Yet so Far - How People in the Vicinity of Potential Sites Respond to Geothermal Energy Power Generation: An Evidence from Indonesia,” Evergreen, vol. 9, no. 1, pp. 1–9, 2022, doi: 10.5109/4774210.
  20. Y. Masaki, “Characteristics of industrial wastewater discharged from industrialized provinces and specific industrial sectors in China based on the official statistical reports,” Evergreen, vol. 3, no. 2, pp. 59–67, 2016, doi: 10.5109/1800873.
  21. u. . department of Energy, “Biodiesel Benefits and Considerations ( Argonne National Laboratory),” Web Page. 2018.
  22. D. V. Suriapparao, R. Vinu, A. Shukla, and S. Haldar, “Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation,” Bioresour. Technol., vol. 302, 2020, doi: 10.1016/j.biortech.2020.122775.
  23. J. Park, M. G. Lee, I. Gulati, J. Park, S. Maken, and M. Lee, “Production of Carboxymethylcellulose Fibers from Waste Lignocellulos Sawdust Using NaOH / NaClO 2 Pretreatment,” Fibers Polym., vol. 15, no. 4, pp. 1–14, 2020, doi: 10.1007/s12221-01.
  24. A. C. Opia, M. K. B. A. Hamid, S. Syahrullail, A. B. A. Rahim, and C. A. N. Johnson, “Biomass as a potential source of sustainable fuel, chemical and tribological materials – Overview,” Mater. Today Proc., Apr. 2020, doi: 10.1016/j.matpr.2020.04.045.
  25. A. D. Chintagunta et al., “Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production,” Frontiers in Microbiology, vol. 12. 2021. doi: 10.3389/fmicb.2021.658284.
  26. Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, and O. Morton, “Energy alternatives: Electricity without carbon,” Nature, vol. 454, no. 7206, pp. 816–823, 2008, doi: 10.1038/454816a.
  27. Panasonic Group, “Environment : Global Warming Prevention at Factories (Reducing CO2 Emissions through Production Activities Panasonic),” 2018. [Online]. Available: https://www.panasonic.com/global/corporate/sustainability/eco/co2/site.html
  28. I. E. Agency, “World Energy Report 2014,” 2014.
  29. J. R. Hillman, “Biofuels. Global Impact on Renewable Energy, Production in Agriculture, and Technology Advancements,” Environ. Agric., vol. 47, no. 3, pp. 575–596, 2011.
  30. G. Joshi et al., “Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides,” Energy Convers. Manag., vol. 96, pp. 258–267, 2015, doi: 10.1016/j.enconman.2015.02.061.
  31. L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, and F. D. Toste, “Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond,” Chem, vol. 1, no. 1. pp. 32–58, 2016. doi: 10.1016/j.chempr.2016.05.002.
  32. B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard, and C. Geantet, “Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review,” Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouv., vol. 68, no. 4, pp. 753–763, 2013, doi: 10.2516/ogst/2013132.
  33. I. Ali, O. M. L. Alharbi, Z. A. Alothman, and A. Alwarthan, “Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water,” Colloids Surfaces B Biointerfaces, vol. 171, no. November 2018, pp. 606–613, 2018, doi: 10.1016/j.colsurfb.2018.07.071.
  34. M. Naqvi and J. Yan, “First-Generation Biofuels: Biomass Resources and Biofuel Production,” Renew. Energy, pp. 23–24, 2015.
  35. S. N. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai, “Production of first and second generation biofuels: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 578–597, 2010, doi: 10.1016/j.rser.2009.10.003.
  36. C. S. H. and R. N. S. G. W. Siple, “Approaches for characterizing air emissions from biomass gasification production and combustion,” ResearchGate, pp. 1–12, 2012.
  37. G. Griffin, D. Batten, and T. Beer, “A Review of Physical Properties of Biomass Pyrolysis Oil,” Int. J. Renew. Energy Res. HOME, vol. 5, no. 1, pp. 2004–20018, 2015.
  38. S. Bekal and N. R. Bhat, “Bio-lubricant as an alternative to mineral oil for a CI engine-An experimental investigation with pongamia oil as a lubricant,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 34, no. 11. pp. 1016–1026, 2012. doi: 10.1080/15567031003735303.
  39. S. Mumpuni et al., “Acetone-Butanol-Ethanol as the Next Green Biofuel – A Review,” Automot. Exp., vol. 5, no. 3, pp. 251–260, 2022.
  40. D. G. Olson, J. E. McBride, A. Joe Shaw, and L. R. Lynd, “Recent progress in consolidated bioprocessing,” Curr. Opin. Biotechnol., vol. 23, no. 3, pp. 396–405, 2012, doi: 10.1016/j.copbio.2011.11.026.
  41. S. Alizadeh Asl, M. Mousavi, and M. Labbafi, “Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse,” J. Food Process. Technol., vol. 08, no. 08, 2017, doi: 10.4172/2157-7110.1000687.
  42. M. Bertero, G. De La Puente, and U. Sedran, “Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning,” Fuel, vol. 95, pp. 263–271, 2012, doi: 10.1016/j.fuel.2011.08.041.
  43. A. Oasmaa, B. Van De Beld, P. Saari, D. C. Elliott, and Y. Solantausta, “Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass,” Energy and Fuels, vol. 29, no. 4, pp. 2471–2484, 2015, doi: 10.1021/acs.energyfuels.5b00026.
  44. J. M. Lavoie, S. Marie-Rose, and D. Lynch, “Non-homogeneous residual feedstocks to biofuels and chemicals via the methanol route,” Biomass Convers. Biorefinery, vol. 3, no. 1, pp. 39–44, 2013, doi: 10.1007/s13399-012-0050-6.
  45. W. Z. L. and X. F. Z. Q. Lu, “Overview of Fuel Properties of Biomass Fast Pyrolysis Oils,” Energy Conversion and Management,” New Dev. Blue Biotechnol. Environ. Pollut. Assess., vol. 50, no. 5, pp. 1376–1383, 2009, doi: 10.4236/as.2012.31016.
  46. Q. Zhang, J. Chang, T. Wang, and Y. Xu, “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion and Management, vol. 48, no. 1. pp. 87–92, 2007. doi: 10.1016/j.enconman.2006.05.010.
  47. S. Clarke, P. Eng, and F. Preto, Biomass Densification for Energy Production., no. 11. 2011, pp. 1–8.
  48. D. O. Okia, C. K. Ndiema, and M. S. Ahmed, “Physical and Chemical Properties of Water Hyacinth Based Composite Briquettes,” Sci. Res. J., vol. IV, no. Xi, pp. 28–36, 2016.
  49. R. A. Lee and J. M. Lavoie, “From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity,” Anim. Front., vol. 3, no. 2, pp. 6–11, 2013, doi: 10.2527/af.2013-0010.
  50. K. Jun, H.-S. Roh, K.-S. Kim, J.-S. Ryu, and K.-W. Lee, “Catalytic investigation for Fischer – Tropsch synthesis from bio-mass derived syngas,” Appl. Catal. A Gen., vol. 259, no. 2, pp. 221–226, 2004, doi: 10.1016/j.apcata.2003.09.034.
  51. N. M. Ribeiro et al., “The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review,” Energy & fuels, vol. 21, no. 4, pp. 2433–2445, 2007.
  52. K. S. Yoo, J. H. Kim, M. J. Park, S. J. Kim, O. S. Joo, and K. D. Jung, “Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts,” Appl. Catal. A Gen., vol. 330, no. 1–2, pp. 57–62, 2007, doi: 10.1016/j.apcata.2007.07.007.
  53. R. D. Sarkar, H. B. Singh, and M. C. Kalita, “Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: A mini-review,” Heliyon, vol. 7, no. 9, pp. 1–21, 2021, doi: 10.1016/j.heliyon.2021.e08057.
  54. Y. Liang, N. Sarkany, and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,” Biotechnol. Lett., vol. 31, no. 7, pp. 1043–1049, 2009, doi: 10.1007/s10529-009-9975-7.
  55. Y. H. Chen and T. H. Walker, “Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids,” Bioresour. Technol., vol. 114, no. June, pp. 512–517, 2012, doi: 10.1016/j.biortech.2012.03.026.
  56. S. Darmawan, K. Raynaldo, and A. Halim, “Investigation of Thruster Design to Obtain the Optimum Thrust for ROV (Remotely Operated Vehicle) Using CFD,” Evergreen, vol. 9, no. 1, pp. 115–125, 2022, doi: 10.5109/4774224.
  57. I. B. Dalha, M. A. Said, Z. A. A. Karim, and S. E. D. Mohammed, “Effects of High CO2Contents on the Biogas/Diesel RCCI Combustion at Full Engine Load,” Evergreen, vol. 9, no. 1, pp. 49–55, 2022, doi: 10.5109/4774216.
  58. N. H. Tran, J. R. Bartlett, G. S. K. Kannangara, A. S. Milev, H. Volk, and M. A. Wilson, “Catalytic upgrading of biorefinery oil from micro-algae,” Fuel, vol. 89, no. 2, pp. 265–274, 2010, doi: 10.1016/j.fuel.2009.08.015.
  59. M. A. A. Wahid, M. J. Megat Mohd Noor, and H. Hara, “Recombinant Moringa oleifera lectin produced in Pichia pastoris is a potential natural coagulant,” Evergreen, vol. 3, no. 2, pp. 11–16, 2016, doi: 10.5109/1800867.
  60. A. K. Agarwal, “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines,” Prog. energy Combust. Sci., vol. 33, no. 3, pp. 233–271, 2007, doi: 10.1016/j.pecs.2006.08.003.
  61. R. Sindhu et al., “Water hyacinth a potential source for value addition: An overview,” Bioresour. Technol., vol. 230, pp. 152–162, 2017, doi: 10.1016/j.biortech.2017.01.035.
  62. H. A. Umar, S. A. Sulaiman, M. A. B. A. Majid, M. A. Said, A. Gungor, and R. K. Ahmad, “An Outlook on Tar Abatement, Carbon Capture and its Utilization for a Clean Gasification Process,” Evergreen, vol. 8, no. 4, pp. 717–731, 2021, doi: 10.5109/4742115.
  63. K. Sandesh and P. Ujwal, “Trends and perspectives of liquid biofuel – Process and industrial viability,” Energy Convers. Manag. X, vol. 10, no. June, pp. 1–41, 2021, doi: 10.1016/j.ecmx.2020.100075.
  64. Salih et al., “The Effects of Canola Oil/Diesel Fuel/Ethanol/N-Butanol/Butyl Di Glycol Fuel Mixtures on Combustion, Exhaust Gas Emissions and Exergy Analysis,” Automot. Exp., vol. 2, no. 2, pp. 41–46, 2019.
  65. W. Golimowski, P. Pasyniuk, and W. A. Berger, “Common rail diesel tractor engine performance running on pure plant oil,” Fuel, vol. 103, no. January, pp. 227–231, 2013.
  66. S. Karthikeyan, M. Periyasamy, A. Prathima, and M. Yuvaraj, “Agricultural tractor engine performance analysis using Stoechospermum marginatum microalgae biodiesel,” Mater. Today Proc., vol. 33, pp. 3438–3442, 2020, doi: 10.1016/j.matpr.2020.04.908.
  67. S. C. A.K. Azad , M.G. Rasul, M.M.K. Khan, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew. Sustain. Energy Rev., vol. 43, no. March, pp. 331–351, 2015.
  68. T. Suthisripok and P. Semsamran, “The impact of biodiesel B100 on a small agricultural diesel engine,” Tribol. Int., vol. 128, no. December, pp. 397–409, 2018.
  69. V. Venkatesan and N. Nallusamy, “Pine oil-soapnut oil methyl ester blends: A hybrid biofuel approach to completely eliminate the use of diesel in a twin cylinder off-road tractor diesel engine,” Fuel, vol. 262, no. February, pp. 1–22, 2020, doi: 10.1016/j.fuel.2019.116500.
  70. P. McCarthy, M. G. Rasul, and S. Moazzem, “Comparison of the performance and emissions of different biodiesel blends against petroleum diesel,” Int. J. Low-Carbon Technol., vol. 6, no. 4, pp. 255–260, 2011, doi: 10.1093/ijlct/ctr012.
  71. M. Saravanakumar, M. Prabhahar, M. V, S. MP, and G. K, “Performance Characteristics of VCR Engine using Lemon Grass Oil and Methanol Mixed with Diesel,” Int. J. Eng. Adv. Technol., vol. 9, no. 2, pp. 3461–3465, 2019, doi: 10.35940/ijeat.b4910.129219.
  72. B. Dhinesh, M. Annamalai, I. J. R. Lalvani, and K. Annamalai, “Studies on the influence of combustion bowl modification for the operation of Cymbopogon flexuosus biofuel based diesel blends in a DI diesel engine,” Appl. Therm. Eng., vol. 112, no. February, pp. 627–637, 2017, doi: 10.1016/j.applthermaleng.2016.10.117.
  73. E. J. A. Sikarwar, Vineet Singh , Zhao, Ming, Paul S. Fennell, Nilay Shah, “Progress in biofuel production from gasification,” Sci. Journals, vol. 61, pp. 187–248, 2017.
  74. N. E. A. El-Naggar, S. Deraz, and A. Khalil, “Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: Current status and recent developments,” Biotechnology, vol. 13, no. 1, pp. 1–21, 2014, doi: 10.3923/biotech.2014.1.21.
  75. A. Rajak, “Nanotechnology and Its Application,” J. Nanomed. Nanotechnol., vol. 9, no. 3, p. 1000502, 2018, doi: 10.4172/2157-7439.1000502.
  76. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.
  77. T. Kegl, A. Kovač Kralj, B. Kegl, and M. Kegl, “Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges,” Prog. Energy Combust. Sci., vol. 83, no. March, 2021, doi: 10.1016/j.pecs.2020.100897.
  78. M. Ramazani S.A., Tamsilian, Y., Shaban, “Synthesis of Nanomaterials,” in Nanocomposite Materials: Synthesis, Properties and Applications, Taylor & Francis, 2016, pp. 5–36. doi: 10.1201/9781315372310-3.
  79. I. F. Andhika, T. E. Saraswati, and S. Hastuti, “The structural characteristics of carbon nanoparticles produced by arc discharge in toluene without added catalyst or gases,” Evergreen, vol. 7, no. 3, pp. 417–428, 2020, doi: 10.5109/4068622.
  80. C.-G. Lee, Y.-J. Hwang, Y.-M. Choi, J.-K. Lee, C. Choi, and J.-M. Oh, “A study on the tribological characteristics of graphite nano lubricants,” Int. J. Precis. Eng. Manuf., vol. 10, no. 1, pp. 85–90, 2009, doi: 10.1007/s12541-009-0013-4.
  81. F. Qiu et al., “Application of nanoparticles in biofuels: An overview,” Fuel, vol. 17, no. 2, pp. 111–126, 2020, doi: 10.1007/s41230-020-0037-z.
  82. A. C. Opia, M. K. A. Hamid, S. Samion, C. A. N. Johnson, A. B. Rahim, and M. B. Abdulrahman, “Nano-Particles Additives as a Promising Trend in Tribology: A Review on their Fundamentals and Mechanisms on Friction and Wear Reduction,” Evergreen, vol. 8, no. 4, pp. 777–798, 2021, doi: 10.5109/4742121.
  83. Y. Liu et al., “Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance,” Nat. Commun., vol. 7, 2016, doi: 10.1038/ncomms11532.
  84. E. A. Burakova et al., “Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation,” J. Mol. Liq., vol. 253, pp. 340–346, 2018, doi: 10.1016/j.molliq.2018.01.062.
  85. M. Salavati-Niasari, F. Davar, and N. Mir, “Synthesis and characterization of metallic copper nanoparticles via thermal decomposition,” Polyhedron, vol. 27, no. 17, pp. 3514–3518, 2008, doi: 10.1016/j.poly.2008.08.020.
  86. M. Porwal, “An Overview on Carbon Nanotubes,” MOJ Bioequivalence Bioavailab., vol. 3, no. 5, pp. 9–12, 2017, doi: 10.15406/mojbb.2017.03.00045.
  87. I. Ijaz, E. Gilani, A. Nazir, and A. Bukhari, “Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles,” Green Chem. Lett. Rev., vol. 13, no. 3, pp. 59–81, 2020, doi: 10.1080/17518253.2020.1802517.
  88. a L. T. and J. Q. Chang Liu, a Bin Qian,*b Xiaofeng Liu, “Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding,” RSC Adv., vol. 6, no. 29, pp. 1–12, 2018, doi: 10.1039/C5RA06853C.
  89. L. Kong, J. Sun, and Y. Bao, “Preparation, characterization and tribological mechanism of nanofluids,” RSC Adv., vol. 7, no. 21, pp. 12599–12609, 2017, doi: 10.1039/c6ra28243a.
  90. M. Egiza et al., “Si and Cr doping effects on growth and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma deposition,” Evergreen, vol. 3, no. 1, pp. 32–36, 2016, doi: 10.5109/1657738.
  91. M. Ezaki and K. Kusakabe, “Highly crystallized tungsten trioxidc loaded titania composites prepared by using ionic liquids and their photocatalytic behaviors,” Evergreen, vol. 1, no. 2, pp. 18–24, 2014, doi: 10.5109/1495159.
  92. S. Mahalingam and S. Ganesan, “Effect of nano-fuel additive on performance and emission characteristics of the diesel engine using biodiesel blends with diesel fuel,” Int. J. Ambient Energy, vol. 41, no. 3, pp. 316–321, 2020.
  93. S. N. A. Yusof, N. A. C. Sidik, Y. Asako, W. M. A. A. Japar, S. B. Mohamed, and N. M. az Muhammad, “A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE),” Nanotechnol. Rev., vol. 9, no. 1, pp. 1326–1349, 2021, doi: 10.1515/ntrev-2020-0104.
  94. A. G. Wang, D. Austin, and H. Song, “Catalytic Biomass Valorization,” Biomass Vol. Estim. Valorization Energy, pp. 1–23, 2017, doi: 10.5772/65826.
  95. S. Janakiraman, T. Lakshmanan, V. Chandran, and L. Subramani, “Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel,” J. Clean. Prod., vol. 245, no. x, pp. 1–41, 2020, doi: 10.1016/j.jclepro.2019.118940.
  96. N. Talib et al., “Tribological study of activated carbon nanoparticle in nonedible nanofluid for machining application,” Evergreen, vol. 8, no. 2, pp. 454–460, 2021, doi: 10.5109/4480728.
  97. A. F. Ridassepri, F. Rahmawati, K. R. Heliani, Chairunnisa, J. Miyawaki, and A. T. Wijayanta, “Activated carbon from bagasse and its application for water vapor adsorption,” Evergreen, vol. 7, no. 3, pp. 409–416, 2020, doi: 10.5109/4068621.
  98. Chairunnisa et al., “Highly Microporous Activated Carbon from Acorn Nutshells and its Performance in Water Vapor Adsorption,” Evergreen, vol. 8, no. 1, pp. 249–254, 2021, doi: 10.5109/4372285.
  99. V. Ivanova, P. Petrova, and J. Hristov, “Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles,” Int. Rev. Chem. Eng., vol. 3, pp. 1–4, 2011.
  100. P. F. Online and S. P. Handbooks, “Immobilization of Actinobacterial Cells : Sodium Alginate and Calcium Chloride Method,” Nature, vol. 01, pp. 491–494, 2022.
  101. K. H. Lee, I. S. Choi, Y. G. Kim, D. J. Yang, and H. J. Bae, “Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads,” Bioresour. Technol., vol. 102, no. 17, pp. 8191–8198, 2011, doi: 10.1016/j.biortech.2011.06.063.
  102. J. O. Westman, N. Bonander, M. J. Taherzadeh, and C. J. Franzén, “Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules,” Biotechnol. Biofuels, vol. 7, no. 1, pp. 1–21, 2014, doi: 10.1186/1754-6834-7-102.
  103. J. C. Duarte, J. A. R. Rodrigues, P. J. S. Moran, G. P. Valença, and J. R. Nunhez, “Effect of immobilized cells in calcium alginate beads in alcoholic fermentation,” AMB Express, vol. 3, pp. 1–8, 2013, doi: 10.1186/2191-0855-3-31.
  104. Y. Kourkoutas, M. Komaitis, A. A. Koutinas, and M. Kanellaki, “Wine production using yeast immobilized on apple pieces at low and room temperatures,” J. Agric. Food Chem., vol. 49, no. 3, pp. 1417–1425, 2001, doi: 10.1021/jf000942n.
  105. S. E. Lee, C. G. Lee, D. H. Kang, H. Y. Lee, and K. H. Jung, “Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production,” J. Microbiol. Biotechnol., vol. 22, no. 12, pp. 1673–1680, 2012, doi: 10.4014/jmb.1202.02049.
  106. S. Plessas, A. Bekatorou, A. A. Koutinas, M. Soupioni, I. M. Banat, and R. Marchant, “Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation,” Bioresour. Technol., vol. 98, no. 4, pp. 860–865, 2007, doi: 10.1016/j.biortech.2006.03.014.
  107. J. Yu, X. Zhang, and T. Tan, “An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production,” J. Biotechnol., vol. 129, no. 3, pp. 415–420, 2007, doi: 10.1016/j.jbiotec.2007.01.039.
  108. M. X. He et al., “Zymomonas mobilis: A novel platform for future biorefineries,” Biotechnol. Biofuels, vol. 7, no. 1, pp. 1–64, 2014, doi: 10.1186/1754-6834-7-101.
  109. M. Z. Ali Mohagheghi , Nancy Dowe, Daniel Schell, Yat-Chen Chou, Christina Eddy, “Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate,” Biotechnol Lett, vol. 34, no. October 2004, p. 15055769, 2004, doi: 10.1023/B.
  110. P. Tewari, E. Doijode, N. R. Banapurmath, and V. S. Yaliwal, “Experimental investigations on a diesel engine fuelled with multiwalled carbon nanotubes blended biodiesel fuels,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 3, pp. 72–76, 2013.
  111. A. Devarajan, Yuvarajan ; Munuswamy, Dinesh Babu; Mahalingam, “Investigation on behavior of diesel engine performance , emission , and combustion characteristics using nano-,” Heat mass Transf., no. June, p. 2537, 2019.
  112. R. Sathiyamoorthi, M. Puviyarasan, and B. Kumar, “Effect of CeO2 nano additive on performance and emission characteristics of diesel engine fuelled by neem oil-biodiesel,” Int. J. Chem. Sci., vol. 14, pp. 473–484, 2016.
  113. V. Narasiman, S. Jeyakumar, and M. Mani, “Experimental investigation of DI diesel engine performance with oxygenated additive and SOME Biodiesel,” J. Therm. Sci. Technol., vol. 10, no. 1, pp. 1–4, 2015, doi: 10.1299/jtst.2015jtst0014.
  114. P. Vedagiri, L. J. Martin, E. G. Varuvel, and T. Subramanian, “Experimental study on NOx reduction in a grapeseed oil biodiesel-fueled CI engine using nanoemulsions and SCR retrofitment,” Environ. Sci. Pollut. Res., vol. 27, no. 24, pp. 29703–29716, 2020, doi: 10.1007/s11356-019-06097-8.
  115. A. F. Chen, M. Akmal Adzmi, A. Adam, M. F. Othman, M. K. Kamaruzzaman, and A. G. Mrwan, “Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide,” Energy Convers. Manag., vol. 171, no. September, pp. 461–477, 2018, doi: 10.1016/j.enconman.2018.06.004.
  116. S. Gumus, H. Ozcan, M. Ozbey, and B. Topaloglu, “Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine,” Fuel, vol. 163, pp. 80–87, 2016.
  117. M. Annamalai et al., “An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel,” Energy Convers. Manag., vol. 123, no. September, pp. 372–380, 2016, doi: 10.1016/j.enconman.2016.06.062.
  118. K. Nanthagopal, B. Ashok, A. Tamilarasu, A. Johny, and A. Mohan, “Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine,” Energy Convers. Manag., vol. 146, pp. 8–19, 2017, doi: 10.1016/j.enconman.2017.05.021.
  119. Y. Shin, J. M. Blackwood, I. T. Bae, B. W. Arey, and G. J. Exarhos, “Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal,” Mater. Lett., vol. 61, no. 21, pp. 4297–4300, 2007, doi: 10.1016/j.matlet.2007.01.091.
  120. R. N. Mehta, M. Chakraborty, and P. A. Parikh, “Nanofuels: Combustion, engine performance and emissions,” Fuel, vol. 120, pp. 91–97, 2014.
  121. A. C. Opia et al., “Tribological Behavior of Organic Anti-Wear and Friction Reducing Additive of ZDDP under Sliding Condition : Synergism and Antagonism Effect,” Evergreen, vol. 9, no. 2, pp. 246–253, 2022.
  122. S. R. H. Siregar, D. Nursani, A. Wiyono, T. P. S. I. Pratiwi, H. Dafiqurrohman, and A. Surjosatyo, “Effect of Ratio Composition and Particle Size to Pelletizing Combination Performance of MSW and Biomass Feedstocks,” Evergreen, vol. 8, no. 4, pp. 890–895, 2021, doi: 10.5109/4742138.
  123. H. M. M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” J. Radiat. Res. Appl. Sci., vol. 8, no. 3, pp. 265–275, 2015, doi: 10.1016/j.jrras.2015.01.007.
  124. I. H. Dwirekso, M. Ibadurrohman, and Slamet, “Synthesis of TiO2-SiO2-cuo nanocomposite material and its activities for self-cleaning,” Evergreen, vol. 7, no. 2, pp. 285–291, 2020, doi: 10.5109/4055234.
  125. J. Miyawaki et al., “Influence of pore size and surface functionality of activated carbons on adsorption behaviors of indole and amylase,” Evergreen, vol. 3, no. 2, pp. 17–24, 2016, doi: 10.5109/1800868.
  126. S. I. Stoeva, F. Huo, J. S. Lee, and C. A. Mirkin, “Three-layer composite magnetic nanoparticle probes for DNA,” J. Am. Chem. Soc., vol. 127, no. 44, pp. 15362–15363, 2005, doi: 10.1021/ja055056d.
  127. Z. Hong et al., “Characteristics of the direct absorption solar collectors based on reduced graphene oxide nanofluids in solar steam evaporation,” Energy Convers. Manag., vol. 199, no. November, pp. 1–14, 2019, doi: 10.1016/j.enconman.2019.112019.
  128. A. R. I. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Appl. Sci., vol. 2, no. 10, pp. 1–70, 2020, doi: 10.1007/s42452-020-03427-1.
  129. B. Ruan and A. M. Jacobi, “Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions,” Nanoscale Res. Lett., vol. 7, pp. 1–31, 2012, doi: 10.1186/1556-276X-7-127.
  130. A. C. Opia et al., “Effect of Surfactants on the Tribological Behavior of Organic Carbon Nanotubes Particles Additive under Boundary Lubrication Conditions,” Tribol. Online, vol. 17, no. 1, pp. 19–31, 2022, doi: 10.2474/trol.17.19.
  131. D. Choudhari and V. Kakhandki, “Characterization and Analysis of Mechanical Properties of Short Carbon Fiber Reinforced Polyamide66 Composites,” Evergreen, vol. 8, no. 4, pp. 768–776, 2021, doi: 10.5109/4742120.
  132. H. K. Ingvar Eide, Kolbjørn Zahlsen, “Identication and Quanti cation of Surfactants in Oil Using the Novel Method for Chemical Fingerprinting Based on,” Energy and Fuels, vol. 20, no. 3, pp. 1161–1164, 2019.
  133. C. L. Yuan, Z. Z. Xu, M. X. Fan, H. Y. Liu, Y. H. Xie, and T. Zhu, “Study on characteristics and harm of surfactants,” J. Chem. Pharm. Res., vol. 6, no. 7, pp. 2233–2237, 2014.
  134. I. Popa, G. Gillies, G. Papastavrou, and M. Borkovec, “Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes,” Journal of Physical Chemistry B, vol. 114, no. 9. pp. 3170–3177, 2010. doi: 10.1021/jp911482a.
  135. J. G. ; A. D. Agarwal, A. K. ; Gupta, “Potential and challenges for large-scale application of biodiesel in automotive sector,” Prog. Energy Combust. Sci., vol. 61, no. 1, pp. 113–149, 2017.
  136. M. F. Othman, A. Adam, G. Najafi, and R. Mamat, “Green fuel as alternative fuel for diesel engine: A review,” Renew. Sustain. Energy Rev., vol. 80, no. December, pp. 694–709, 2017, doi: 10.1016/j.rser.2017.05.140.
  137. A. T. K. Colin R. Ferguson, Internal Combustion Engines: Applied Thermosciences, 3rd Editio. Wiley, 2017.
  138. B. Dhinesh and M. Annamalai, “A study on performance, combustion and emission behaviour of diesel engine powered by novel nano nerium oleander biofuel,” J. Clean. Prod., vol. 196, no. September, pp. 74–83, 2018, doi: 10.1016/j.jclepro.2018.06.002.
  139. C. K. Westbrook et al., “Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels,” Combust. Flame, vol. 158, no. 4, pp. 742–755, 2011, doi: 10.1016/j.combustflame.2010.10.020.
  140. C. K. Westbrook, W. J. Pitz, S. M. Sarathy, and M. Mehl, “Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels,” Proc. Combust. Inst., vol. 34, no. 2, pp. 3049–3056, 2013, doi: 10.1016/j.proci.2012.05.025.
  141. J. Y. Do et al., “Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2),” Appl. Catal. B Environ., vol. 237, no. December, pp. 895–910, 2018, doi: 10.1016/j.apcatb.2018.06.070.
  142. R. Sathiyamoorthi, G. Sankaranarayanan, and K. Pitchandi, “Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine,” Appl. Therm. Eng., vol. 112, pp. 1421–1432, 2017, doi: 10.1016/j.applthermaleng.2016.10.179.
  143. S. Nithya and S. Manigandan, “The effect of engine emission on canola biodiesel blends with TiO 2,” Int. J. Ambient Energy, vol. 40, no. 8, pp. 40–43, 2019.
  144. Yang Changru, N. Takata, Kyaw Thu, and T. Miyazaki, “How Lubricant Plays a Role in the Heat Pump System,” Evergreen, vol. 8, no. 1, pp. 198–203, 2021, doi: 10.5109/4372279.
  145. M. K. A. Ali et al., “Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives,” Appl. Energy, vol. 211, pp. 461–478, 2018, doi: 10.1016/j.apenergy.2017.11.013.
  146. G. Jian, L. Zhou, N. W. Piekiel, and M. R. Zachariah, “Low effective activation energies for oxygen release from metal oxides: Evidence for mass-transfer limits at high heating rates,” ChemPhysChem, vol. 15, no. 8, pp. 1666–1672, 2014, doi: 10.1002/cphc.201301148.
  147. S. H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan, “Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine,” Energy, vol. 124, pp. 543–552, 2017, doi: 10.1016/j.energy.2017.02.109.
  148. Y. Devarajan, D. B. Munuswamy, and A. Mahalingam, “Influence of nano-additive on performance and emission characteristics of a diesel engine running on neat neem oil biodiesel,” Environ. Sci. Pollut. Res., vol. 25, no. 26, pp. 26167–26172, 2018.
  149. A. Sharma, A. K. Sharma, A. K. Raghav, and V. Kumar, “Emission Analysis of Mustard Oil Methyl Oil Methyl Ester at Varying Injection Timing,” Indian J. Sci. Technol., vol. 9, no. 2, pp. 482–491, 2016.
  150. S. Lin and W. Lee, “Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butan,” Energy Environ., vol. 93, no. 1, pp. 364–372, 2012.
  151. K. S. Nagaprasad, N. R. Banapurmath, D. Madhu, and T. M. Yunus Khan, “Pre- and post-combustion emission reduction techniques for engine fuelled with diesel/DEE blends by three approaches,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 14, pp. 1706–1723, 2021, doi: 10.1080/15567036.2019.1663304.
  152. J. A. C. Da Silva, A. C. Habert, and D. M. G. Freire, “A potential biodegradable lubricant from castor biodiesel esters,” Lubr. Sci., vol. 25, no. 1, pp. 53–61, 2013, doi: 10.1002/ls.1205.
  153. J. Senthil Kumar and B. R. Ramesh Bapu, “Cerium oxide nano additive impact of VCR diesel engine characteristics by using Ginger grass oil blended with diesel,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 578–583, 2022, doi: 10.1080/01430750.2019.1653975.
  154. Y. Zhang, C. Li, D. Jia, D. Zhang, and X. Zhang, “Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil,” J. Clean. Prod., vol. 87, pp. 930–940, 2015, doi: 10.1016/j.jclepro.2014.10.027.
  155. Y. Wu, Z. He, X. Zeng, T. Ren, E. de Vries, and E. van der Heide, “Tribological properties and tribochemistry mechanism of sulfur-containing triazine derivatives in water-glycol,” Tribol. Int., vol. 109, no. November 2016, pp. 140–151, 2017, doi: 10.1016/j.triboint.2016.12.038.
  156. M. I. H. C. Abdullah, M. F. Bin Abdollah, H. Amiruddin, N. Tamaldin, and N. R. M. Nuri, “Optimization of tribological performance of hBN/AL2O3 nanoparticles as engine oil additives,” Procedia Eng., vol. 68, pp. 313–319, 2013, doi: 10.1016/j.proeng.2013.12.185.
  157. S. S. Pandey AK, Nandgaonkar M, Pandey U, “Experimental Investigation of the Effect of Karanja Oil Biodiesel with Cerium Oxide Nano Particle Fuel Additive on Lubricating Oil Tribology and Engine Wear in a Heavy Duty 38.8L,780 HP Military CIDI Diesel Engine,” SAE Tech. Pap. 2018-01-1753, pp. 9–11, 2018, doi: 10.4271/2018-01-1753.
  158. J. Basha, “An Experimental Analysis of a Diesel Engine Using Alumina Nanoparticles Blended Diesel Fuel,” SAE Tech. Pap., pp. 1–24, 2014, doi: 10.4271/2014-01-1391.
  159. V. Dhana Raju, P. S. Kishore, K. Nanthagopal, and B.Ashok, “An experimental study on the effect of nanoparticles with novel tamarind seed methyl ester for diesel engine applications,” Energy Convers. Manag., vol. 164, no. May, pp. 655–666, 2018, doi: 10.1016/j.enconman.2018.03.032.
  160. C. S. Aalam, C. G. Saravanan, and M. Kannan, “Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel,” Alexandria Eng. J., vol. 54, no. 3, pp. 351–358, 2015, doi: 10.1016/j.aej.2015.04.009.
  161. S. Akram et al., “Impact of cerium oxide and cerium composite oxide as nano additives on the gaseous exhaust emission profile of waste cooking oil based biodiesel at full engine load conditions,” Renew. Energy, vol. 143, no. December, pp. 898–905, 2019, doi: 10.1016/j.renene.2019.05.025.
  162. A. Prabu and R. B. Anand, “Emission control strategy by adding alumina and cerium oxide nano particle in biodiesel,” J. Energy Inst., vol. 89, no. 3, pp. 366–372, 2016.
  163. T. Shaafi and R. Velraj, “Influence of alumina nanoparticles , ethanol and isopropanol blend as additive with diesel – soybean biodiesel blend fuel : Combustion , engine performance and emissions,” Renew. Energy, vol. 80, no. August, pp. 655–663, 2015.
  164. M. H. S. Muthusamy Sivakumar ; Sundaram, N. S. ; Kumar, R. R. ; Thasthagir, “Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine,” Renew. Energy, vol. 2018, no. 116, pp. 518–526, 2017.
  165. S. Manigandan, P. Gunasekar, J. Devipriya, and S. Nithya, “Emission and injection characteristics of corn biodiesel blends in diesel engine,” Fuel, vol. 235, pp. 723–735, 2019, doi: 10.1016/j.fuel.2018.08.071.
  166. J. D. B. Kandasamy A., “Performance and Emission Characteristics of CI Engine using Biodiesel ( Cotton Seed Oil ) Blends with Titanium Oxide,” Int. J. Veh. Struct. Syst., vol. 9, no. 4, pp. 21–22, 2017.
  167. N. B. D. Yuvarajan, M. Dinesh Babu, “Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine,” Atmos. Pollut. Res., vol. 9, no. 1, pp. 47–52, 2018.
  168. T. Saliev, “The Advances in Biomedical Applications of Carbon Nanotubes,” J. carbon Res., vol. 5, no. 2, p. 29, 2019, doi: 10.3390/c5020029.
  169. W. V. Reid, M. K. Ali, and C. B. Field, “The future of bioenergy,” Glob. Chang. Biol., vol. 26, no. 1, pp. 274–286, 2020, doi: 10.1111/gcb.14883.
  170. Z. Liu, J. Li, G. Knothe, B. K. Sharma, and J. Jiang, “Improvement of diesel lubricity by chemically modified tung-oil-based fatty acid esters as additives,” Energy and Fuels, vol. 33, no. 6, pp. 5110–5115, 2019, doi: 10.1021/acs.energyfuels.9b00854.
  171. T. S. Chang, R. Yunus, U. Rashid, T. S. Y. Choong, D. R. A. Biak, and A. M. Syam, “Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid,” J. Oleo Sci., vol. 64, no. 2, pp. 143–151, 2015, doi: 10.5650/jos.ess14162.
  172. I. Veza, M. F. M. Said, and Z. A. Latiff, “Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation,” Biomass and Bioenergy, vol. 144, p. 105919, 2021, doi: 10.1016/j.biombioe.2020.105919.
  173. A. Mahyudin, S. Arief, H. Abral, Emriadi, M. Muldarisnur, and M. P. Artika, “Mechanical properties and biodegradability of areca nut fiber-reinforced polymer blend composites,” Evergreen, vol. 7, no. 3, pp. 366–372, 2020, doi: 10.5109/4068618.

Most read articles by the same author(s)