Main Article Content
Abstract
Buddagan 1 Hamlet, Pamekasan Regency, faces the problem of cow dung waste piling up around the house, causing an unpleasant odor and unhygienic kitchen conditions. The proximity of the cow shed to the kitchen, coupled with the status of a heritage village that requires a solution without changing the building structure, demands an innovative approach. Therefore, this community service aims to apply biogas technology to utilize cow dung waste as an alternative energy source, improve environmental cleanliness, and reduce household expenses. Community service activities include socialization of biogas technology, training on use and maintenance, as well as installation and evaluation assistance. As a result, biogas technology was successfully implemented, meeting cooking gas needs, reducing household costs, and producing organic fertilizer. Socialization, training, and ongoing assistance ensure the operational success of biogas technology. Buddagan 1 Hamlet is now an inspiring example of environmentally friendly livestock waste management.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Anggono, W., Hayakawa, A., Okafor, E. C., & Gotama, G. J. (2019). Experimental and Numerical Investigation of Laminar Burning Velocities of Artificial Biogas Under Various Pressure and CO2 Concentration. E3S Web of Conferences, 130, 1037. https://doi.org/10.1051/e3sconf/201913001037
- Anggono, W., Hayakawa, A., Okafor, E. C., Gotama, G. J., & Wongso, S. (2021). Laminar Burning Velocity and Markstein Length of CH4/CO2/Air Premixed Flames at Various Equivalence Ratios and CO2 Concentrations Under Elevated Pressure. Combustion Science and Technology, 193(14), 2369–2388. https://doi.org/10.1080/00102202.2020.1737032
- Anggono, W., Suprianto, F. D., Purnomo, K., Hartanto, T. I., & Wijaya, T. P. (2016). The Effect of Nitrogen on Flame Characteristics in Biogas External Premixed Combustion. Applied Mechanics and Materials, 836, 265–270. https://doi.org/10.4028/www.scientific.net/AMM.836.265
- Anggono, W., Sutrisno, Tanoto, Y., Hernando, I. C., Waskito, C., & Laksana, G. B. (2023). Pemanfaatan Energi Biogas dan Pupuk Organik Berbahan Kotoran Sapi Oleh Peternak Sapi Aditoya Sebagai Energi Alternatif dan Subsitusi Kebutuhan Pupuk Pertanian Masyarakat. Surya Abdimas, 7(4), 633–640. https://doi.org/10.37729/abdimas.v7i4.3189
- Anggono, W., Wardana, I. N. G., Lawes, M., Hughes, K. J., Wahyudi, S., Hamidi, N., & Hayakawa, A. (2016). The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures. SUSTAINABLE ENERGY AND ADVANCED MATERIALS : Proceeding of the 4th International Conference and Exhibition on Sustainable Energy and Advanced Materials 2015 (ICE-SEAM 2015), 1717(1), 30001. https://doi.org/10.1063/1.4943425
- Annur, S., Kusmasari, W., Wulandari, R., & Sumiati. (2020). Pengembangan Biogas Dari Sampah Untuk Energi Listrik Dan Bahan Bakar Kompor Di Tpa Cilowong, Kota Serang, Banten. KUAT: Keuangan Umum Dan Akuntansi Terapan, 2(1), 48–51. https://doi.org/10.31092/kuat.v2i1.823
- Arianingsih, E., Mirdhayati, I., & Harahap, A. E. (2021). Kualitas Biogas Berbahan Feses Sapi dan Jerami Jagung (Zea mays L.) pada C/N Rasio dan Lama Fermentasi yang Berbeda. JURNAL TRITON, 12(1), 58–67. https://doi.org/10.47687/jt.v12i1.155
- Artanti, D. D., Saputro, R. R., & Budiyono, B. (2012). Biogas Production from Cow Manure. International Journal of Renewable Energy Development, 1(2), 61–64. https://doi.org/10.14710/ijred.1.2.61-64
- Fentie, H., & Sime, G. (2022). Biogas technology adoption and its potential of replacing biomass fuels, kerosene, and chemical fertilizer in rural Gonder, Northern Ethiopia. Sustainable Environment, 8(1). https://doi.org/10.1080/27658511.2022.2066811
- Greene, J. M., Wallace, J., Williams, R. B., Leytem, A. B., Bock, B. R., McCully, M., Kaffka, S. R., Rotz, C. A., & Quinn, J. C. (2024). National Greenhouse Gas Emission Reduction Potential from Adopting Anaerobic Digestion on Large-Scale Dairy Farms in the United States. Environmental Science and Technology, 58(28), 12409–12419. https://doi.org/10.1021/acs.est.4c00367
- Haryanto, A., Okfrianas, R., & Rahmawati, W. (2019). Pengaruh Komposisi Subtrat dari Campuran Kotoran Sapi dan Rumput Gajah (Pennisetum purpureum) terhadap Produktivitas Biogas pada Digester Semi Kontinu. Jurnal Rekayasa Proses, 13(1), 47. https://doi.org/10.22146/jrekpros.41125
- Kabeyi, M. J. B., & Olanrewaju, O. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 10, 1–43. https://doi.org/10.1155/2022/8750221
- Kimutai, S. K., Kimutai, I. K., & Manirambona, E. (2025). Impact of biogas adoption on household energy use and livelihood improvement in Kenya: an overview on a roadmap toward sustainability. International Journal of Energy Sector Management, 19(3), 551–568. https://doi.org/10.1108/IJESM-07-2024-0053
- Kuntowijoyo. (2017). Perubahan Sosial Dalam Masyarakat Agraris Madura 1850-1940. IRCiSoD.
- Kurniati, Y., Rahmat, A., Malianto, B. I., Nandayani, D., & Pratiwi, W. S. W. (2021). Review Analisa Kondisi Optimum Dalam Proses Pembuatan Biogas. Rekayasa, 14(2), 272–281. https://doi.org/10.21107/rekayasa.v14i2.11305
- Megawati. (2014). Pengaruh Penambahan Em4 (Effective Microorganism-4) Pada Pembuatan Biogas Dari Eceng Gondok Dan Rumen Sapi. Jurnal Bahan Alam Terbarukan, 3(2). https://doi.org/10.15294/jbat.v3i2.3696
- Paulus, J., Lengkey, L. C. C. E., & Najoan, J. (2022). Penerapan Teknologi Biogas sebagai Sumber Bahan Bakar dan Pupuk Organik untuk Meningkatkan Kesejahteraan Petani di Desa Pinaling Minahasa Selatan. Agrokreatif: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 8(2), 220–227. https://doi.org/10.29244/agrokreatif.8.2.220-227
- Pawlak, J. (2013). Biogas technology transfer as an important factor of rural development. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 44(4), 20–22.
- Pemerintah Kabupaten Pamekasan. (2010). Ensiklopedi Pamekasan Alam, Masyarakat, dan Budaya. Pemerintah Kabupaten Pamekasan dan Fakultas Ilmu Budaya UGM.
- Rocha-Meneses, L., Luna-delRisco, M., González, C. A., Moncada, S. V., Moreno, A., Sierra-Del Rio, J., & Castillo-Meza, L. E. (2023). An overview of the socio-economic, technological, and environmental opportunities and challenges for renewable energy generation from residual biomass: a case study of biogas production in Colombia. Energies, 16(16), 5901.
- Sakka, S. (2025). Optimizing biogas production from household waste: an economical approach to energy and environmental sustainability in rural areas. Euro-Mediterranean Journal for Environmental Integration, 106422. https://doi.org/10.1007/s41207-025-00769-3
- Suanggana, D., Haryono, H. D., Djafar, A., & Irawan, J. (2022). Potensi Produksi Biogas Dari Anaerobic Digestion Kotoran Sapi Dan Kulit Nanas Sebagai Sumber Energi Rice Cooker Biogas. G-Tech: Jurnal Teknologi Terapan, 6(1), 1–7. https://doi.org/10.33379/gtech.v6i1.1246
- Sutadiwiria, Y., Herdyanti, M. K., Meirawaty, M., Yuda, H. F., Rendy, R., Mahendra, R. K., Ardikasa, G., & Letlora, I. (2023). Biogas from goat waste as a green energy source. Community Empowerment, 8(5), 610–614. https://doi.org/10.31603/ce.8371
- Tulistyantoro, L. (2019). Taneyan Lanjhang Buddagan I Sebagai Aset Pariwisata Heritage di Pamekasan Madura. Prosiding Seminar Nasional Budaya Madura V: Membangun Pariwisata Madura Berbasis Budaya Lokal. https://doi.org/10.21107/budayamadura.2019.3
- Uhunamure, S. E., Nethengwe, N. S., & Tinarwo, D. (2019). Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa. Renewable and Sustainable Energy Reviews, 107, 264–273. https://doi.org/10.1016/j.rser.2019.03.006
- Yasmin, N., & Grundmann, P. (2019). Pre- And post-adoption beliefs about the diffusion and continuation of biogas-based cooking fuel technology in Pakistan. Energies, 12(16). https://doi.org/10.3390/en12163184