Main Article Content

Abstract

Agriculture is a vital sector that plays a role in fulfilling food needs, economic development, and community welfare, particularly in rural areas. However, most farmers in Lebak Village, Grabag District, Magelang Regency, still rely on conventional methods that are inefficient and do not yet utilize modern agricultural technology. This community service activity aims to enhance farmers' understanding and skills related to appropriate technology, specifically a sensor-based automatic soil moisture irrigation system, a portable soil pH meter, and a circle model seed planting pattern. The method employed in this activity was the socialization of appropriate technology. The results show a significant improvement, with the average understanding score increasing by 91%, 85% of farmers being able to operate the pH meter, water use efficiency rising by 28%, and corn planting time becoming 44% faster. These outcomes prove that participatory socialization based on direct practice is effective in boosting farmers' capacity, both cognitively and technically. This activity is expected to serve as a model for strengthening the adoption of modern agriculture based on adaptive, productive, and sustainable precision technology at the village level.

Keywords

Modern agriculture Appropriate technology Farmer empowerment

Article Details

References

  1. Anugrah, I. S., Syahyuti, & Hestina, J. (2022). Tata Kelola Bantuan Alat Dan Mesin Pertanian Sebagai Instrumen Pendukung Pertanian Modern. Forum penelitian Agro Ekonomi, 40(2).
  2. BPS Kabupaten Magelang. (2024). Kecamatan Grabag dalam Angka 2024 (J. Prasetiyo & 1 (ed.)). BPS Kabupaten Magelang.
  3. Dea, A. Y., Kaleka, M. U., & Ngaku, M. A. (2024). The Role Of Agricultural Extenders In Supporting Sustainable Agricultural Development. Jurnal Agribis, 17(1), 2281–2290. https://doi.org/10.36085/agribis.v17i1.5950
  4. Dewangan, S. K., Shrivastava, S. K., Kumari, L., Minj, P., Kumari, J., & Sahu, R. (2023). The Effects of Soil pH on Soil Health and Environmental Sustainability: A Review. Journal of Emerging Technologies and Innovative Research (JETIR), 10(6), 611–616.
  5. Effendi, N., Ramadhani, W., & Farida, F. (2022). Perancangan Sistem Penyiraman Tanaman Otomatis Menggunakan Sensor Kelembapan Tanah Berbasis IoT. Jurnal CoSciTech (Computer Science and Information Technology), 3(2), 91–98. https://doi.org/10.37859/coscitech.v3i2.3923
  6. Eze, V. H. U., Eze, E. C., Alaneme, G. U., BUBU, P. E., Nnadi, E. O. E., & Okon, M. Ben. (2025). Integrating IoT sensors and machine learning for precision agroecology: enhancing crop resilience and resource efficiency through data-driven strategies, challenges, and future prospects. Discover Artificial Intelligence, 5(1), 247. https://doi.org/10.1007/s44279-025-00247-y
  7. Fajri, M. (2025). Peningkatan Kesejahteraan Petani melalui Penerapan Teknologi Pertanian Berbasis Smart Farming di Desa Durian Kecamatan Janapria. UNITY: Journal of Community Service, 1(2), 25–59. https://doi.org/10.70716/unity.v1i2.102
  8. Faried, A. I., Hasanah, U., Siregar, K. H., & Hutagalung, J. A. (2024). Peningkatan Produktivitas Pertanian Melalui Adopsi Teknologi: Studi Kasus Peran Petani Milenial Dalam Implementasi Inovasi Pertanian Di Desa Pamah Simelir. SENASHTEK (Seminar Nasional Sosial Humaniora & Teknologi), 81–88.
  9. Firdaus, M. W., Hayati, M., & Nugroho, T. R. D. A. (2023). Peran dan Kontribusi Generasi Muda dalam Pembangunan Pertanian Indonesia: Sebuah Review. Jurnal Ekonomi Pertanian dan Agribisnis (JEPA), 7(4), 1521–1527. https://doi.org/10.21776/ub.jepa.2023.007.04.28
  10. García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors, 20(4), 45–57. https://doi.org/10.3390/s20041042
  11. Gyamfi, E. K., ElSayed, Z., Kropczynski, J., Yakubu, M. A., & Elsayed, N. (2024). Agricultural 4.0 Leveraging on Technological Solutions: Study for Smart Farming Sector. Information Technology, 1(14), 41–50. https://doi.org/10.48550/arXiv.2401.00814
  12. Herwidyanto, F. (2023). Analisis Rantai Pasok Kopi Varietas Robusta (Coffea canephora) di Kecamatan Grabag Kabupaten Magelang. AGRISTA, 11(3), 13–22.
  13. Husna, A. N. A. (2021). Ekspor dan Impor Hasil Pertanian terhadap Perekonomian Indonesia. Universitas Muhammadiyah Yogyakarta.
  14. Mansoor, S., Iqbal, S., Popscu, S. M., Kim, S. L., Chung, Y. S., & Baek, J.-H. (2025). Integration of smart sensors and IoT in precision agriculture. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
  15. Nawaz, M., & Babar, M. I. K. (2025). IoT and AI for smart agriculture in resource-constrained environments: Challenges, opportunities and solutions. Discover Sustainability, 6(1), 119. https://doi.org/10.1007/s43926-025-00119-3
  16. Nofikasari, N., Sari, T. P., Ambarsari, A., & Purwanto, E. (2025). Strategic management to increase crop yields in Krandon Village. Community Empowerment, 10(3), 727–739. https://doi.org/10.31603/ce.12389
  17. Noviyanti, E. C., & Sutrisno, I. (2021). Analisis Dampak Alih Fungsi Lahan Pertanian terhadap Pendapatan Petani di Kabupaten Mimika. Jurnal Kritis (Kebijakan, Riset, dan Teknologi), 5(1), 1–14.
  18. Nurhaliza. (2025). Perancangan Sistem Irigasi Otomatis Berbasis IoT untuk Optimalisasi Penggunaan Air pada Lahan Pertanian Kering. Jurnal Teknik Indonesia, 3(4), 129–137.
  19. Pambudi, A. D., Arifin, Z., Islahudin, N., Heryanto, M. A., Rahadian, H., Tamami, A. J., & Muharrom, S. (2024). Implementation of integrated IoT-based monitoring system to improve clean water services at KP-SPAMS Tirta Jatisari. Community Empowerment, 9(12), 1769–1774. https://doi.org/10.31603/ce.12376
  20. Panunggul, V. B., Yusra, S., Tuhuteru, S., Arina Fahmi, D., Laeshita, P., Fitri Rachmawati, N., Hendri Putranto, A., Ibrahim, E., Permatasari Kamarudin, A., Tsaniyatul Miratis Sulthoniyah, S., Maulana, S., Burhani Marda, A., & Esty Puri Utami, M. (2023). Pengantar Ilmu Pertanian (A. B. Marda, E. P. Utami, & 1 (ed.)). Widina Media Utama.
  21. Rasyid, M., & Hasibuan, R. (2023). Penerapan Teknologi Precision Farming untuk Meningkatkan Efisiensi Produksi Pertanian. https://doi.org/10.31219/osf.io/yxuek
  22. Rosalia, C. R., Muchlis, M., & Rakhman, A. N. (2022). Aplikasi sistem informasi geografis untuk pemetaan kerentanan kuantitas mata air dan pengaruhnya terhadap budidaya kopi di Kecamatan Grabag, Kabupaten Magelang. JNANALOKA, 3(2), 87–97. https://doi.org/10.36802/jnanaloka.2022.v3-no2-87-97
  23. Rosalina, D. I. (2022). Penerapan dalam Pembangunan Pertanian Modern di Indonesia yang Sehat, Ramah Lingkungan dan Berkelanjutan. SEMAGRI, 3(1), 9–20.
  24. Rupngam, T., & Messiga, A. J. (2024). Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability, 16(14), 15–24. https://doi.org/10.3390/su16146141
  25. Sariah, Suarna, N., Ali, I., & Solihudin, D. (2025). Penerapan Convolutional Neural Network (CNN) untuk Prediksi Penyakit Tanaman Padi melalui Citra Daun. Jurnal Komtika (Komputasi dan Informatika), 9(1), 1–10. https://doi.org/10.31603/komtika.v9i1.12852
  26. Sihombing, Y. (2021). Peran Sektor Pertanian terhadap Perekonomian Wilayah Perdesaan dalam Mengentaskan Kemiskinan. Agrista: Jurnal Ilmiah Mahasiswa Agribisnis, 5(1), 936–945.
  27. Syahputra, R. (2024). Pertanian Organik: Solusi Ramah Lingkungan untuk Pertanian Berkelanjutan. Literacy Notes, 2(1), 14–21.
  28. Wahyudi, A. B. E., Salimi, M., Hidayah, R., Suhartono, Wahyono, Maigina, A., Mahfuzah, A., & Karsono. (2025). E-Module Based on Local Wisdom to Strength Cultural Literacy and Critical Thinking. Salud, Ciencia y Tecnologia - Serie de Conferencias, 4. https://doi.org/10.56294/sctconf20251310
  29. Wahyudi, Pradana, A. I., & Permatasari, H. (2025). Implementasi Sistem Irigasi Otomatis Berbasis IoT untuk Pertanian Greenhouse. Jurnal Pendidikan dan Teknologi Indonesia, 5(2), 435–446. https://doi.org/10.52436/1.jpti.656
  30. Wang, Q., Zhang, Y., Tian, S., Yuan, X., Ma, Q., Liu, M., Li, Y., & Liu, J. (2021). Evaluation and optimization of a circular economy model integrating planting and breeding based on coupling of emergy analysis and life cycle assessment. Environmetal Science and Pollution Research, 28, 62407–62420. https://doi.org/10.21203/rs.3.rs-161699/v1
  31. Wood, C. W., Krutz, L. J., Henry, W. B., Irby, T., Orlowski, J. M., Bryant, C. J., Atwill, R. L., Spencer, G. D., & Mills, B. E. (2020). Developing sensor-based irrigation scheduling that maximizes soybean grain yield, irrigation water use efficiency, and returns above irrigation costs. Crop, Forage and Turfgrass Management, 6(1), 1–7. https://doi.org/10.1002/cft2.20029