Main Article Content

Abstract

Improving heat transfer coefficient is a significant subject of study in many engineering domains. The use of nanofluids in car radiators might boost the heat transfer coefficient. The current study investigates a car's radiator's heat transfer coefficient and thermal conductivity. The heat transmission parameters of a car radiator were analyzed for coolant mass flow rates ranging from 600 to 1200 liters/hour and nanofluid concentrations ranging from 0.2 to 0.8% by volume. The primary coolant was prepared by combining water and ethylene glycol in a 60:40% combination with multi-walled carbon nanotube nanoparticles. The coolant's input temperatures were varied between 30 °C and 80 °C by impinging an air jet into the car radiator through a hallow cone nozzle plate with and without spacing. The result demonstrates that the volume flow rate of coolant on the tube side increases considerably as the heat transfer coefficient increases. At a nanoparticle concentration of 0.8 vol. %, the nanofluid's total heat transfer coefficient is enhanced by 12% compared with the base fluid. The heat transfer coefficient is improved by 42.6% for 0.8% volume of MWNCT nanofluid without spacing of the hallow cone nozzle plate and by 51.9% with spacing of the hallow cone nozzle plate.

Keywords

Jet impingement Cone nozzle plate Heat transfer enhancement Thermal conductivity Nanofluid

Article Details

References

  1. P. Martínez-Merino, R. Alcántara, P. Gómez-Larrán, I. Carrillo-Berdugo, and J. Navas, “MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology,” Renewable Energy, vol. 188, pp. 721–730, 2022, doi: 10.1016/j.renene.2022.02.069.
  2. A. I. Ramadhan, W. H. Azmi, R. Mamat, E. Diniardi, and T. Y. Hendrawati, “Experimental Investigation of Cooling Performance in Automotive Radiator using Al2O3-TiO2-SiO2 Nanofluids,” Automotive Experiences, vol. 5, no. 1, pp. 28–39, Nov. 2021, doi: 10.31603/ae.6111.
  3. A. Kolakoti, M. Setiyo, D. Novia, A. Husaeni, and A. B. Dani, “Enhancing heat transfer performance of automotive car radiator using camphor nanoparticles : experimental study with bibliometric analysis,” Teknomekanik, vol. 6, no. 2, pp. 47–67, 2023, doi: 10.24036/teknomekanik.v6i2.25072.
  4. A. Z. Ziva, Y. K. Suryana, Y. S. Kurniadianti, A. Bayu, D. Nandiyanto, and T. Kurniawan, “Recent Progress on the Production of Aluminum Oxide (Al2O3) Nanoparticles: A Review,” Mechanical Engineering for Society and Industry, pp. 54–77, 2021, doi: 10.31603/mesi.5493.
  5. H. Liu, M. Wen, H. Yang, Z. Yue, and M. Yao, “A review of thermal management system and control strategy for automotive engines,” Journal of Energy Engineering, vol. 147, no. 2, p. 3121001, 2021, doi: 10.1061/(ASCE)EY.1943-7897.0000743.
  6. Y. Deng, M. Zhang, Y. Jiang, and J. Liu, “Two-stage multichannel liquid–metal cooling system for thermal management of high-heat-flux-density chip array,” Energy Conversion and Management, vol. 259, p. 115591, 2022, doi: 10.1016/j.enconman.2022.115591.
  7. C. T. Yaw et al., “Heat Transfer Enhancement by Hybrid Nano Additives—Graphene Nanoplatelets/Cellulose Nanocrystal for the Automobile Cooling System (Radiator),” Nanomaterials, vol. 13, no. 5, p. 808, 2023, doi: 10.3390/nano13050808.
  8. L. Ben Said, L. Kolsi, K. Ghachem, M. Almeshaal, and C. Maatki, “Advancement of nanofluids in automotive applications during the last few years—a comprehensive review,” Journal of Thermal Analysis and Calorimetry, pp. 1–28, 2021, doi: 10.1007/s10973-021-11088-4.
  9. Z. Said, M. Sohail, and A. K. Tiwari, “Automotive coolants,” in Nanotechnology in the Automotive Industry, Elsevier, 2022, pp. 773–792.
  10. S. Mert, H. Yasar, U. Durmaz, A. Topuz, A. Yeter, and T. Engin, “An experimental study on cooling performance of a car radiator using Al2O3-ethylene glycol/water nanofluid,” Thermal Science, vol. 25, no. 1 Part B, pp. 801–809, 2021, doi: 10.2298/TSCI190630179M.
  11. R. Saidur, K. Y. Leong, and H. A. Mohammed, “A review on applications and challenges of nanofluids,” Renewable and sustainable energy reviews, vol. 15, no. 3, pp. 1646–1668, 2011, doi: 10.1016/j.rser.2010.11.035.
  12. K. S. Vathsav and R. Koushik, “Numerical analysis of convective heat transfer on straight finned tube with different nano fluids,” Materials Today: Proceedings, vol. 51, pp. 1625–1630, 2022, doi: 10.1016/j.matpr.2021.10.488.
  13. K. Leela Kumar, R. Rudrabhi Ramu, and P. H. J. Venkatesh, “Performance of automobile engine radiator by using nanofluids on variable compression diesel engine,” in Recent Trends in Product Design and Intelligent Manufacturing Systems: Select Proceedings of IPDIMS 2021, Springer, 2022, pp. 383–396.
  14. R. P. Shankara et al., “An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids,” Alexandria Engineering Journal, vol. 61, no. 7, pp. 5155–5167, 2022, doi: 10.1016/j.aej.2021.10.037.
  15. M. Naraki, S. M. Peyghambarzadeh, S. H. Hashemabadi, and Y. Vermahmoudi, “Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator,” International Journal of Thermal Sciences, vol. 66, pp. 82–90, 2013, doi: 10.1016/j.ijthermalsci.2012.11.013.
  16. D. G. Subhedar, B. M. Ramani, and A. Gupta, “Experimental investigation of overall heat transfer coefficient of Al2O3/water–mono ethylene glycol nanofluids in an automotive radiator,” Heat Transfer—Asian Research, vol. 46, no. 7, pp. 863–877, 2017, doi: 10.1002/htj.21247.
  17. V. Sivalingam, P. G. Kumar, R. Prabakaran, J. Sun, R. Velraj, and S. C. Kim, “An automotive radiator with multi-walled carbon-based nanofluids: A study on heat transfer optimization using MCDM techniques,” Case Studies in Thermal Engineering, vol. 29, p. 101724, 2022, doi: 10.1016/j.csite.2021.101724.
  18. K.-J. Park and D. Jung, “Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning,” Energy and Buildings, vol. 39, no. 9, pp. 1061–1064, 2007, doi: 10.1016/j.enbuild.2006.12.001.
  19. Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” International Journal of Heat and Mass Transfer, vol. 49, no. 1–2, pp. 240–250, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.07.009.
  20. S. C. Pang, M. A. Kalam, H. H. Masjuki, and M. A. Hazrat, “A review on air flow and coolant flow circuit in vehicles’ cooling system,” International Journal of Heat and Mass Transfer, vol. 55, no. 23–24, pp. 6295–6306, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.07.002.
  21. S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Naraki, and A. Vermahmoudi, “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator,” Applied Thermal Engineering, vol. 52, no. 1, pp. 8–16, 2013, doi: 10.1016/j.applthermaleng.2012.11.013.
  22. P. Venkataramana, P. Vijayakumar, and B. Balakrishna, “Experimental investigation of aluminum oxide nanofluid on closed loop pulsating heat pipe performance,” Journal of Applied Fluid Mechanics, vol. 15, no. 6, pp. 1947–1955, 2022, doi: 10.47176/JAFM.15.06.1324.
  23. R. Sadri et al., “An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes,” Nanoscale research letters, vol. 9, pp. 1–16, 2014, doi: 10.1186/1556-276X-9-151.
  24. P. Samira, Z. H. Saeed, S. Motahare, and K. Mostafa, “Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator,” Korean journal of chemical engineering, vol. 32, pp. 609–616, 2015, doi: 10.1007/s11814-014-0244-7.
  25. M. A. Fikri, W. M. F. Wan Ishak, H. K. Adli, R. Mamat, W. H. Azmi, and A. I. Ramadhan, “Experimental Study on Thermo-Physical Properties of TiO2-SiO2 Nanofluids (70: 30) in Water/Ethylene Glycol Mixture,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2023, doi: 10.37934/arfmts.108.2.200214.
  26. A. I. Ramadhan, E. Diniardi, H. Basri, D. Almanda, and W. H. Azmi, “Experimental investigation of thermal conductivity of Al2O3-TiO2-SiO2 nanofluids in EG/water mixture for automotive radiator cooling system,” in AIP Conference Proceedings, 2023, vol. 2706, no. 1, doi: 10.1063/5.0120209.
  27. E. Shahsavani, M. Afrand, and R. Kalbasi, “Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes: a novel correlation for the non-Newtonian nanofluid,” Journal of Thermal Analysis and Calorimetry, vol. 131, no. 2, pp. 1177–1185, 2018, doi: 10.1007/s10973-017-6711-8.
  28. R. V. Ramaraju, M. Kota, H. Bin Manap, and V. R. Veeredhi, “Enhancement of heat transfer coefficient in an automobile radiator using multi walled carbon nano tubes (MWCNTS),” in ASME International Mechanical Engineering Congress and Exposition, 2014, vol. 46552, p. V08AT10A070, doi: 10.1115/IMECE2014-36964.
  29. M. M. Elias et al., “Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant,” International Communications in Heat and Mass Transfer, vol. 54, pp. 48–53, 2014, doi: 10.1016/j.icheatmasstransfer.2014.03.005.
  30. A. Kumar, P. Chand, and M. A. Hassan, “Louvered finned car radiator with MWCNT-SiO2 hybrid nanofluid: An experimental approach,” Powder Technology, vol. 415, p. 118176, 2023, doi: 10.1016/j.powtec.2022.118176.
  31. C. Kalaivanan and Y. Suvaikin, “Removal of Machine industrial from wastewater using cylindrical flow reactor by electrochemical oxidation and optimization of treatment conditions,” Journal of Advanced Applied Scientific Research, vol. 1, no. 7, 2017, doi: 10.46947/joaasr17201758.
  32. E. M. Cardenas Contreras and E. P. Bandarra Filho, “Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range,” Applied Thermal Engineering, vol. 207, p. 118149, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2022.118149.
  33. A. Kumar and S. Subudhi, Thermal characteristics and convection in nanofluids. Springer Singapore, 2021.
  34. R. A. Bhogare and B. S. Kothawale, “A review on applications and challenges of nanofluids as coolant in automobile radiator,” International journal of scientific and research publications, vol. 3, no. 8, pp. 1–11, 2013.
  35. A. El Jery, A. A. Ramírez-Coronel, J. C. O. Gavilán, N. Al-Ansari, and S. S. Sammen, “Proposing empirical correlations and optimization of Nu and Sgen of nanofluids in channels and predicting them using artificial neural network,” Case Studies in Thermal Engineering, vol. 45, p. 102970, 2023, doi: 10.1016/j.csite.2023.102970.
  36. G. A. Oliveira, E. M. C. Contreras, and E. P. Bandarra Filho, “Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator,” Applied Thermal Engineering, vol. 111, pp. 1450–1456, 2017, doi: 10.1016/j.applthermaleng.2016.05.086.
  37. W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Experimental thermal and fluid science, vol. 33, no. 4, pp. 706–714, 2009, doi: 10.1016/j.expthermflusci.2009.01.005.