Main Article Content

Abstract

This study was conducted to synthesize MCM-48 based on the surfactants (cetyltrimethylammonium bromide (CTAB) and Triton X-100). The effect of surfactant on MCM-48 was studied in the esterification of nyamplung seed oil. Optimization of the amount of surfactant in the MCM-48 catalyst in the esterification of nyamplung seed oil was carried out by washing and calcination methods. Comparison of GC-MS method and acid-base titration was also studied to determine the activity of the MCM-48 catalyst in the esterification. The results of the Mann Whitney statistical test showed that there was no significant difference (Asymp. Sig. (2-tailed) = 0.967) for the two methods. The effect of the active site on the MCM-48 catalyst activity in the esterification was characterized by FTIR and XRD. The catalyst's activity is significantly influenced by both the percentage transmittance of the silanol active site and the surfactant removal method. The MCM-48 catalyst manufactured by calcination (CTAB-MCM-48/650) performed 12.31% better than the washing approach (CTAB-MCM-48/1w). However, the CTAB-MCM-48 catalyst can be applied to the simultaneous reaction (esterification and transesterification) of the conversion of nyamplung seed oil into biodiesel.

Keywords

MCM-48 Surfactant Esterification Nyamplung Biodiesel

Article Details

References

  1. T. M. I. Mahlia et al., “Patent landscape review on biodiesel production: Technology updates,” Renewable and Sustainable Energy Reviews, vol. 118, no. November 2019, p. 109526, 2020, doi: 10.1016/j.rser.2019.109526.
  2. T. Kivevele, T. Raja, V. Pirouzfar, B. Waluyo, and M. Setiyo, “LPG-Fueled Vehicles: An Overview of Technology and Market Trend,” Automotive Experiences, vol. 3, no. 1, pp. 6–19, 2020, doi: 10.31603/ae.v3i1.3334.
  3. L. M. Olalekan, O. Olatunde, F. I. Olufemi, and A. A. Olamide, “Mathematical modeling and cost comparison for electricity generation from petrol and liquified petroleum gas (LPG),” Mechanical Engineering for Society and Industry, vol. 2, no. 2, pp. 56–62, 2022, doi: 10.31603/mesi.6697.
  4. M. Mofijur, M. M. Hasan, T. M. I. Mahlia, S. M. A. Rahman, A. S. Silitonga, and H. C. Ong, “Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review,” Energies, vol. 12, no. 18, p. 3557, Sep. 2019, doi: 10.3390/en12183557.
  5. R. S. Norhasyima and T. M. I. Mahlia, “Advances in CO₂ utilization technology: A patent landscape review,” Journal of CO2 Utilization, vol. 26, pp. 323–335, Jul. 2018, doi: 10.1016/j.jcou.2018.05.022.
  6. M. Setiyo and S. Munahar, “AFR and fuel cut-off modeling of LPG-fueled engine based on engine, transmission, and brake system using fuzzy logic controller (FLC),” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 8, no. 1, pp. 50–59, 2017, doi: 10.14203/j.mev.2017.v8.50-59.
  7. M. Setiyo, S. Munahar, A. Triwiyatno, and J. D. Setiawan, “Modeling of deceleration Fuel cut-off for LPG fuelled engine using Fuzzy logic controller,” International Journal of Vehicle Structures and Systems, vol. 9, no. 4, 2017, doi: 10.4273/ijvss.9.4.12.
  8. B. Sajjadi, A. A. A. Raman, and H. Arandiyan, “A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 62–92, Sep. 2016, doi: 10.1016/j.rser.2016.05.035.
  9. I. Lawan et al., “Synthesis, properties and effects of a multi-functional biodiesel fuel additive,” Fuel Processing Technology, vol. 198, p. 106228, Feb. 2020, doi: 10.1016/j.fuproc.2019.106228.
  10. S. Pambudi, N. Ilminnafik, S. Junus, and M. N. Kustanto, “Experimental Study on the Effect of Nano Additives γAl2O3 and Equivalence Ratio to Bunsen Flame Characteristic of Biodiesel from Nyamplung (Calophyllum Inophyllum),” Automotive Experiences, vol. 4, no. 2, pp. 51–61, 2021, doi: 10.31603/ae.4569.
  11. M. Fadhlullah, S. N. B. Widiyanto, and E. Restiawaty, “The potential of nyamplung (Calophyllum inophyllum L.) seed oil as biodiesel feedstock: Effect of seed moisture content and particle size on oil yield,” Energy Procedia, vol. 68, no. 2015, pp. 177–185, 2015.
  12. A. Arumugam and V. Ponnusami, “Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview,” Renewable Energy, vol. 131, pp. 459–471, 2019, doi: 10.1016/j.renene.2018.07.059.
  13. M. Ranjithkumar, S. Karuppusamy, P. Lakshmanan, D. Ragulnath, K. Saravanan, and A. M. Rameshbabu, “Study on diesel engine combustion parameters using Calophyllum Inophyllum methyl ester and micro algae methyl ester with level addition of Di-Ethyl ether,” Materials Today: Proceedings, vol. 37, pp. 3388–3392, 2021, doi: 10.1016/j.matpr.2020.09.275.
  14. A. Priyanto, “Eksplorasi nyamplung (Calophyllum inophyllum L.) di sebaran alam Kalimantan Barat (Ketapang) untuk program pemuliaan pohon,” Informasi Teknis, vol. 11, no. 2, pp. 69–78, 2013.
  15. N. A. Fauzan, E. S. Tan, F. L. Pua, and G. Muthaiyah, “Physiochemical properties evaluation of Calophyllum inophyllum biodiesel for gas turbine application,” South African Journal of Chemical Engineering, vol. 32, pp. 56–61, 2020, doi: 10.1016/j.sajce.2020.02.001.
  16. T. M. M. Marso, C. S. Kalpage, and M. Y. Udugala-Ganehenege, “Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil,” Fuel, vol. 199, pp. 47–64, Jul. 2017, doi: 10.1016/j.fuel.2017.01.004.
  17. L. Kolo, F. Firdaus, P. Taba, M. Zakir, and N. H. Soekamto, “Selectivity of the New Catalyst ZnO-MCM-48-CaO in Esterification of Calophyllum inophyllum Oil,” Automotive Experiences, vol. 5, no. 2, pp. 217–229, 2022, doi: 10.31603/ae.6711.
  18. G. P. Benedictto, M. S. Legnoverde, J. C. Tara, R. M. Sotelo, and E. I. Basaldella, “Synthesis of K+/MgO heterogeneous catalysts derived from MgCO3 for biodiesel production,” Materials Letters, vol. 246, pp. 199–202, Jul. 2019, doi: 10.1016/j.matlet.2019.03.081.
  19. D. Ayu, R. Aulyana, E. W. Astuti, K. Kusmiyati, and N. Hidayati, “Catalytic Transesterification of Used Cooking Oil to Biodiesel: Effect of Oil-Methanol Molar Ratio and Reaction Time,” Automotive Experiences, vol. 2, no. 3, pp. 73–77, 2019, doi: 10.31603/ae.v2i3.2991.
  20. S. Supriyadi, P. Purwanto, D. D. Anggoro, and H. Hermawan, “The Effects of Sodium Hydroxide (NaOH) Concentration and Reaction Temperature on The Properties of Biodiesel from Philippine Tung (Reutealis Trisperma) Seeds,” Automotive Experiences, vol. 5, no. 1, pp. 57–67, 2022, doi: 10.31603/ae.5986.
  21. A. Kolakoti, B. Prasadarao, K. Satyanarayana, M. Setiyo, H. Köten, and M. Raghu, “Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN),” Automotive Experiences, vol. 5, no. 1, pp. 3–15, 2022, doi: 10.31603/ae.6171.
  22. A. Kolakoti, M. Setiyo, and B. Waluyo, “Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 22–30, 2021, doi: 10.31603/mesi.5320.
  23. R. Naveenkumar and G. Baskar, “Biodiesel production from Calophyllum inophyllum oil using zinc doped calcium oxide (Plaster of Paris) nanocatalyst,” Bioresource Technology, vol. 280, pp. 493–496, May 2019, doi: 10.1016/j.biortech.2019.02.078.
  24. M. Rizal, M. D. Supardan, and Y. Syamsyuddin, “Oil Esterification Using High-Free Fatty Acid Acid Using Hydrodynamic Cavitation Process,” IOSR Journal of Applied Chemistry, vol. 12, no. 10, pp. 1–4, 2019, doi: 10.9790/5736-1210010104.
  25. B. Ashok et al., “An experimental analysis on the effect of n-pentanol- Calophyllum Inophyllum Biodiesel binary blends in CI engine characteristcis,” Energy, vol. 173, pp. 290–305, Apr. 2019, doi: 10.1016/j.energy.2019.02.092.
  26. M. AlSharifi and H. Znad, “Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production,” Renewable Energy, vol. 136, pp. 856–864, Jun. 2019, doi: 10.1016/j.renene.2019.01.052.
  27. Z. Khan et al., “Current developments in esterification reaction: A review on process and parameters,” Journal of Industrial and Engineering Chemistry, vol. 103, pp. 80–101, Nov. 2021, doi: 10.1016/j.jiec.2021.07.018.
  28. Hartati et al., “Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel,” Journal of the Energy Institute, vol. 93, no. 6, pp. 2238–2246, Dec. 2020, doi: 10.1016/j.joei.2020.06.006.
  29. J. Liu, Y. Nan, and L. L. Tavlarides, “Continuous production of ethanol-based biodiesel under subcritical conditions employing trace amount of homogeneous catalysts,” Fuel, vol. 193, pp. 187–196, Apr. 2017, doi: 10.1016/j.fuel.2016.12.058.
  30. J. Vakros, “Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review,” Catalysts, vol. 8, no. 11, p. 562, Nov. 2018, doi: 10.3390/catal8110562.
  31. E. Dahdah et al., “Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment,” Renewable Energy, vol. 146, pp. 1242–1248, Feb. 2020, doi: 10.1016/j.renene.2019.06.171.
  32. C. Baroi and A. K. Dalai, “Simultaneous esterification, transesterification and chlorophyll removal from green seed canola oil using solid acid catalysts,” Catalysis Today, vol. 207, pp. 74–85, May 2013, doi: 10.1016/j.cattod.2012.07.003.
  33. Y. M. Sani, W. M. A. W. Daud, and A. R. Abdul Aziz, “Activity of solid acid catalysts for biodiesel production: A critical review,” Applied Catalysis A: General, vol. 470, pp. 140–161, Jan. 2014, doi: 10.1016/j.apcata.2013.10.052.
  34. N. H. Said, F. N. Ani, and M. F. M. Said, “Review of the Production of Biodiesel from Waste Cooking Oil Using Solid Catalysts,” Journal of Mechanical Engineering and Sciences, vol. 8, pp. 1302–1311, Jun. 2015, doi: 10.15282/jmes.8.2015.5.0127.
  35. L. Kolo, Firdaus, and P. Taba, “The use of MCM-48-nCaO as catalyst in esterification reaction of nyamplung seed oil (Calophyllum inophyllum L.),” Indonesia Chimica Acta, vol. 8, no. 20, pp. 1–10, 2015, doi: 10.20956/ica.v8i2.2466.
  36. M. Pirouzmand, B. Nikzad-kojanag, and S. K. Seyed-Rasulzade, “Surfactant containing Ca/MCM-41 as a highly active, green and reusable catalyst for the transesterification of canola oil,” Catalysis Communications, vol. 69, pp. 196–201, Sep. 2015, doi: 10.1016/j.catcom.2015.06.021.
  37. P. Dinh Du et al., “Aminopropyl Functionalised MCM-41: Synthesis and Application for Adsorption of Pb(II) and Cd(II),” Advances in Materials Science and Engineering, vol. 2019, pp. 1–15, Feb. 2019, doi: 10.1155/2019/8573451.
  38. T. Yokoi, S. Seo, N. Chino, A. Shimojima, and T. Okubo, “Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method,” Microporous and Mesoporous Materials, vol. 124, no. 1–3, pp. 123–130, Aug. 2009, doi: 10.1016/j.micromeso.2009.05.002.
  39. A. B. Fadhil, A. M. Aziz, and M. H. Al-Tamer, “Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification,” Energy Conversion and Management, vol. 108, pp. 255–265, Jan. 2016, doi: 10.1016/j.enconman.2015.11.013.
  40. D. O. Onukwuli, L. N. Emembolu, C. N. Ude, S. O. Aliozo, and M. C. Menkiti, “Optimization of biodiesel production from refined cotton seed oil and its characterization,” Egyptian Journal of Petroleum, vol. 26, no. 1, pp. 103–110, Mar. 2017, doi: 10.1016/j.ejpe.2016.02.001.
  41. M. C. Gomes Souza, M. Firmino de Oliveira, A. T. Vieira, A. Marcio de Faria, and A. C. Ferreira Batista, “Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability,” Renewable Energy, vol. 163, pp. 368–374, Jan. 2021, doi: 10.1016/j.renene.2020.08.073.
  42. P. Taba, P. Budi, and A. Y. Puspitasari, “Adsorption of heavy metals on amine-functionalized MCM-48,” IOP Conference Series: Materials Science and Engineering, vol. 188, p. 012015, Apr. 2017, doi: 10.1088/1757-899X/188/1/012015.
  43. L. Kolo, N. Soekamto, F. -, and P. Taba, “Synthesis of MCM-48 contains NaCl and Surfactant as Catalyst in the Esterification of Nyamplung Oil (Calophyllum inophyllum L.) to Biodiesel,” Egyptian Journal of Chemistry, pp. 0–0, May 2022, doi: 10.21608/ejchem.2022.104616.4836.
  44. N. Nurhidayanti, “Studi Kinetika Reaksi Pembuatan Biodiesel dari Minyak Nyamplung Menggunakan Iradiasi Microwave,” Jurnal Tekno Insentif, vol. 12, no. 2, pp. 1–12, Apr. 2019, doi: 10.36787/jti.v12i2.100.
  45. M. H. Abdellah, C. A. Scholes, L. Liu, and S. E. Kentish, “Efficient degumming of crude canola oil using ultrafiltration membranes and bio-derived solvents,” Innovative Food Science & Emerging Technologies, vol. 59, p. 102274, Jan. 2020, doi: 10.1016/j.ifset.2019.102274.
  46. J. C. K. Lam et al., “Vibrational spectroscopy of low-k/ultra-low-k dielectric materials on patterned wafers,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 5, Sep. 2011, doi: 10.1116/1.3625099.
  47. P. Taba, R. D. P. Mustafa, L. M. Ramang, and A. H. Kasim, “Adsorption of Pb 2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48,” Journal of Physics: Conference Series, vol. 979, p. 012058, Mar. 2018, doi: 10.1088/1742-6596/979/1/012058.
  48. M. Fathy, H. Selim, and A. E. L. Shahawy, “Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution,” RSC Advances, vol. 10, no. 39, pp. 23417–23430, 2020, doi: 10.1039/D0RA02960B.
  49. E. Elzanati, H. Abdallah, E. Farg, R. S. Ettouney, and M. A. El-Rifai, “Enhancing The Esterification Conversion Using Pervaporation,” Journal of Engineering Science and Technology, vol. 13, no. 4, pp. 990–1004, 2018.
  50. J. W. Seo, W.-J. Lee, S. Nam, H. Ryoo, J.-N. Kim, and C. H. Ko, “Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions,” Journal of Nanomaterials, vol. 2015, pp. 1–7, 2015, doi: 10.1155/2015/149654.
  51. P. Taba et al., “Mesoporous Silica Modified With Amino Group (NH2-MCM-48) as Adsorbent of Ag(I) and Cr(III) in Water,” Rasayan Journal of Chemistry, vol. 14, no. 01, pp. 204–211, 2021, doi: 10.31788/RJC.2021.1415963.
  52. X. Qian et al., “A Simple Strategy To Improve PEI Dispersion on MCM-48 with Long-Alkyl Chains Template for Efficient CO 2 Adsorption,” Industrial & Engineering Chemistry Research, vol. 58, no. 25, pp. 10975–10983, Jun. 2019, doi: 10.1021/acs.iecr.9b00545.
  53. L. Safiddine, A. Hadj‐Ziane Zafour, I. Fofana, A. Skender, F. Guerbas, and A. Boucherit, “Transformer oil reclamation by combining several strategies enhanced by the use of four adsorbents,” IET Generation, Transmission & Distribution, vol. 11, no. 11, pp. 2912–2920, Aug. 2017, doi: 10.1049/iet-gtd.2016.1995.
  54. Shagufta, I. Ahmad, and R. Dhar, “Sulfonic Acid-Functionalized Solid Acid Catalyst in Esterification and Transesterification Reactions,” Catalysis Surveys from Asia, vol. 21, no. 2, pp. 53–69, Jun. 2017, doi: 10.1007/s10563-017-9226-1.