Main Article Content

Abstract

There have been great strides in recent years in the shift from conventional Internal Combustion Engine Vehicles (ICEVs) because of the deteriorating effects the fossil fuels they use have on the environment. Although lithium-ion battery electric vehicles (EVs) address some of these environmental problems, they do not appear to be a promising alternative because of their limited range, long charging duration, and the negative effects resulting from the production and disposal of their batteries. Demand for hydrogen vehicles has therefore increased over the years. This is because, since they use hydrogen as a fuel, they offer longer ranges, shorter refueling durations, and zero emissions. In this paper, a 70 kW PEM Fuel Cell Electric Bus (PEMFCEB) which has a 50 kWh buffer battery, and a total hydrogen capacity of 38 kg is modeled using MATLAB/Simulink. In the study, two hybrid energy management systems – fuzzy logic and conventional on-off using a ‘Relay’ block – are integrated into the model. By simulating several repeated NEDC (New European Driving Cycle) and WLTP (Worldwide Harmonized Light Vehicle Test Procedure) cycles, the overall performance of the bus including its total range, consumption of hydrogen and oxygen, and fuel cell efficiency under each energy management system is analyzed and compared. For instance, during the NEDC cycle, the bus achieves a total range of 492.02 km with Fuzzy Logic compared to 448.85 km with the traditional on-off system. Similarly, under the WLTP cycle, the bus exhibits a total range of 407.61 km and 362.33 km with Fuzzy Logic and on-off techniques respectively.

Keywords

Electric vehicle Hydrogen vehicle Matlab/Simulink Modeling PEM fuel cell Simulation

Article Details

References

  1. Q. Hassan, I. D. J. Azzawi, A. Z. Sameen, and H. M. Salman, “Hydrogen Fuel Cell Vehicles: Opportunities and Challenges,” Sustainability, vol. 15, no. 15, p. 11501, Jul. 2023, doi: 10.3390/su151511501.
  2. G. W. Crabtree and M. S. Dresselhaus, “The Hydrogen Fuel Alternative,” MRS Bulletin, vol. 33, no. 4, pp. 421–428, Apr. 2008, doi: 10.1557/mrs2008.84.
  3. B. Tanç, H. T. Arat, E. Baltacıoğlu, and K. Aydın, “Overview of the next quarter century vision of hydrogen fuel cell electric vehicles,” International Journal of Hydrogen Energy, vol. 44, no. 20, pp. 10120–10128, Apr. 2019, doi: 10.1016/j.ijhydene.2018.10.112.
  4. I. C. Setiawan and M. Setiyo, “Fueling the Future: The Case for Heavy-Duty Fuel Cell Electric Vehicles in Sustainable Transportation,” Automotive Experiences, vol. 7, no. 1, pp. 1–5, Apr. 2024, doi: 10.31603/ae.11285.
  5. M. Setiyo, “Sustainable Transport: The Role of Clean Energy, Mass Rapid Transit, Non-motorized Mobility, and Challenges to Achievement,” Automotive Experiences, vol. 6, no. 1, pp. 1–3, 2023, doi: 10.31603/ae.9108.
  6. I. Abdullaev, N. Lin, and J. Rashidov, “Electric Vehicles: Manuscript of a Bibliometric Analysis Unveiling Trends, Innovations and Future Pathways,” International Journal of Automotive Science And Technology, vol. 8, no. 2, pp. 212–224, Jun. 2024, doi: 10.30939/ijastech..1424879.
  7. M. N. K. Jarkoni et al., “Effects of exhaust emissions from diesel engine applications on environment and health: A review,” Journal of Sustainability Science and Management, vol. 17, no. 1, pp. 281–301, Jan. 2022, doi: 10.46754/jssm.2022.01.019.
  8. A. A. Abdel-Rahman, “On the emission from internal combustion engines: A review,” International Journal of Energy Research, vol. 22, no. 6, pp. 483–513, 1998, doi: 10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-ZCITATIONS145.
  9. S. K. Ankathi, J. Bouchard, and X. He, “Beyond Tailpipe Emissions: Life Cycle Assessment Unravels Battery’s Carbon Footprint in Electric Vehicles,” World Electric Vehicle Journal, vol. 15, no. 6, p. 245, Jun. 2024, doi: 10.3390/wevj15060245.
  10. J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A Review on Electric Vehicles: Technologies and Challenges,” Smart Cities, vol. 4, no. 1, pp. 372–404, Mar. 2021, doi: 10.3390/smartcities4010022.
  11. C. E. Thomas, “Fuel cell and battery electric vehicles compared,” International Journal of Hydrogen Energy, vol. 34, no. 15, pp. 6005–6020, Aug. 2009, doi: 10.1016/j.ijhydene.2009.06.003.
  12. E. Schaltz, “Electrical Vehicle Design and Modeling,” in Electric Vehicles - Modelling and Simulations, InTech, 2011. doi: 10.5772/20271.
  13. A. O. Kiyakli and H. Solmaz, “Modeling of an Electric Vehicle with MATLAB/Simulink,” International Journal of Automotive Science and Technology, vol. 2, no. 4, pp. 9–15, Dec. 2018, doi: 10.30939/ijastech..475477.
  14. T. Kocakulak, V. K. T. Thallapalli, and A. O. Kiyakli, “Modeling of an Electric Tractor and Determining Energy Consumption Values In Different Duties,” Engineering Perspective, vol. 2, no. 2, pp. 79–85, 2021, doi: 10.29228/eng.pers.51651.
  15. O. Karakaş, U. B. Şeker, and H. Solmaz, “Modeling of an Electric Bus Using MATLAB/Simulink and Determining Cost Saving for a Realistic City Bus Line Driving Cycle,” Engineering Perspective, vol. 2, no. 2, pp. 52–62, 2021, doi: 10.29228/eng.pers.51422.
  16. H. Hemi, J. Ghouili, and A. Cheriti, “A real time fuzzy logic power management strategy for a fuel cell vehicle,” Energy Conversion and Management, vol. 80, pp. 63–70, Apr. 2014, doi: 10.1016/j.enconman.2013.12.040.
  17. N. Mebarki, T. Rekioua, Z. Mokrani, D. Rekioua, and S. Bacha, “PEM fuel cell/ battery storage system supplying electric vehicle,” International Journal of Hydrogen Energy, vol. 41, no. 45, pp. 20993–21005, Dec. 2016, doi: 10.1016/j.ijhydene.2016.05.208.
  18. Dana TM4, “TM4 Sumo HD,” Dana TM4, 2024. https://www.danatm4.com/products/systems/sumo-hd/ (accessed Mar. 01, 2024).
  19. G. Hwang, K. Lee, J. Kim, K.-J. Lee, S. Lee, and M. Kim, “Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors,” Sustainability, vol. 12, no. 18, p. 7354, Sep. 2020, doi: 10.3390/su12187354.
  20. M. Ehsani, Y. Gao, S. Longo, and K. M. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles, 3rd ed. CRC Press, 2018.
  21. S. Çetinkaya, Taşıt Mekaniği. Nobel Akademik Yayıncılık, 2023.
  22. T. K.-E. Yurdaer, “Comparison of Energy Consumption of Different Electric Vehicle Power Systems Using Fuzzy Logic-Based Regenerative Braking,” Engineering Perspective, vol. 1, no. 1, pp. 11–21, 2021, doi: 10.29228/sciperspective.47590.
  23. A. O. Kiyakli, “6x6 Seri hibrit elektrikli bir zirhli personel taşıyıcının modellenmesi,” Gazi University, 2022.
  24. T. Kocakulak and H. Solmaz, “Ön ve son iletimli paralel hibrit araçların bulanık mantık yöntemi ile kontrolü ve diğer güç sistemleri ile karşılaştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 4, pp. 2269–2286, Jul. 2020, doi: 10.17341/gazimmfd.709101.
  25. Xiaohong Nian, Fei Peng, and Hang Zhang, “Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798–5808, Oct. 2014, doi: 10.1109/TIE.2014.2300059.
  26. J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1103–1112, Oct. 2004, doi: 10.1109/TIE.2004.834972.
  27. J. M. Correa, F. A. Farret, V. A. Popov, and M. G. Simoes, “Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells,” IEEE Transactions on Energy Conversion, vol. 20, no. 1, pp. 211–218, Mar. 2005, doi: 10.1109/TEC.2004.842382.
  28. G. N. Srinivasulu, T. Subrahmanyam, and V. D. Rao, “RETRACTED: Parametric sensitivity analysis of PEM fuel cell electrochemical Model,” International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14838–14844, Nov. 2011, doi: 10.1016/j.ijhydene.2011.03.040.
  29. A. S. Menesy, H. M. Sultan, A. Korashy, F. A. Banakhr, M. G. Ashmawy, and S. Kamel, “Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm,” IEEE Access, vol. 8, pp. 31892–31909, 2020, doi: 10.1109/ACCESS.2020.2973351.
  30. F. Barbir, PEM fuel cells: Theory and Practice. Academic Press, 2012.
  31. J. Zhang, J. Wu, and H. Zhang, PEM Fuel cell testing and diagnosis. Newnes, 2013.
  32. Y. D. Herlambang et al., “Application of a PEM Fuel Cell Engine as a Small-Scale Power Generator for Small Cars with Different Fuel Concentrations,” Automotive Experiences, vol. 6, no. 2, pp. 273–289, Aug. 2023, doi: 10.31603/ae.9225.
  33. G. Sefkat and M. A. Özel, “Pem Yakit Pilinin Simulink Modeli ve Analizi,” Uludağ University Journal of The Faculty of Engineering, vol. 23, no. 2, pp. 351–366, Oct. 2018, doi: 10.17482/uumfd.400337.
  34. N. M. Boyacioğlu, T. Kocakulak, M. Batar, A. Uyumaz, and H. Solmaz, “Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method,” International Journal of Automotive Science and Technology, vol. 7, no. 4, pp. 295–308, Dec. 2023, doi: 10.30939/ijastech..1340339.
  35. S. N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to Fuzzy Logic using MATLAB. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-35781-0.
  36. N. Sulaiman, M. A. Hannan, A. Mohamed, E. H. Majlan, and W. R. Wan Daud, “A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 802–814, Dec. 2015, doi: 10.1016/j.rser.2015.07.132.
  37. M. Ö. Yatak, Ç. Hisar, and F. Şahin, “Fuzzy Logic Controller for Half Vehicle Active Suspension System: An Assessment on Ride Comfort and Road Holding,” International Journal of Automotive Science And Technology, vol. 8, no. 2, pp. 179–187, 2024, doi: 10.30939/ijastech..1372001.
  38. İ. Özmen and C. Közkurt, “Design of Fuzzy Logic Supported Car Driver Control System,” International Journal of Automotive Science and Technology, vol. 5, no. 3, pp. 228–238, Sep. 2021, doi: 10.30939/ijastech..902139.
  39. T. Alp Arslan, F. E. Aysal, İ. ÇELİK, H. Bayrakçeken, and T. N. Öztürk, “Quarter Car Active Suspension System Control Using Fuzzy Controller,” Engineering Perspective, vol. 4, no. 4, pp. 33–39, 2022, doi: 10.29228/eng.pers.66798.
  40. A. Kabza, Just another Fuel Cell Formulary. 2022. [Online]. Available: https://www.kabza.de/pemfc.de/FCF_A4.pdf
  41. J. Larminie and A. Dicks, Fuel cell systems explained. Wiley-Blackwell, 2003.