Main Article Content

Abstract

Waste lubricant oil is always found in motor vehicle repair shops. Utilizing waste lubricant oil by distilling it will provide benefits. For this reason, waste lubricant oil was distilled in this research. Several characterizations were conducted to determine the viscosity, density, low heat value (LHV), and flash point of waste lubricant oil and distillation products. The distillation product is less viscous, denser, LHV, and flash point than lubricant oil waste. The distillation product was mixed with Pertamina DEX (0, 5, 10, and 15 vol.%) and then filled into the fuel tank for the engine performance test. The present experiment utilized a compression-ignition (CI) engine to measure performance. CI engine speed variations were carried out at 1000, 1500, 2000, and 2500 to see the influence of the mixed fuel on torque, power, specific fuel consumption (SFC), thermal efficiency, and smoke opacity. The increase in CI engine speed leads to an increase in torque, power, thermal efficiency, and smoke opacity, but at the same time, SFC decreases to 2500 rpm. Increasing the distillation product content in the mixed fuel decreased torque, power, SFC, thermal efficiency, and increased smoke opacity.

Keywords

Waste lubricant oil Distillation product CI Engine performance

Article Details

References

  1. Ibrahim, R.L.; Ajide, K.B.; Omokanmi, O.J. Non-renewable energy consumption and quality of life: Evidence from Sub-Saharan African economies. Resources Policy 2021, 73, 102176, doi:10.1016/j.resourpol.2021.102176.
  2. Zhang, Y.; Li, L.; Sadiq, M.; Chien, F. The impact of non-renewable energy production and energy usage on carbon emissions: Evidence from China. Energy & Environment 2024, 35, 2248–2269, doi:10.1177/0958305X221150432.
  3. Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Applied Energy 2018, 225, 965–974, doi:10.1016/j.apenergy.2018.05.076.
  4. Arjun, T.B.; Atul, K.P.; Muraleedharan, A.P.; Walton, P.A.; Bijinraj, P.B.; Raj, A.A. A review on analysis of HHO gas in IC engines. Materials Today: Proceedings 2019, 11, 1117–1129, doi:10.1016/j.matpr.2018.12.046.
  5. Nahian, M.R.; Islam, M.N.; Khan, S.M. Production of Biodiesel from Palm Oil and Performance Test with Diesel in CI Engine. In Proceedings of the International Conference on Mechanical, Industrial and Energy Engineering 2016; 2016; pp. 26–27.
  6. Onukwuli, D.O.; Emembolu, L.N.; Ude, C.N.; Aliozo, S.O.; Menkiti, M.C. Optimization of biodiesel production from refined cotton seed oil and its characterization. Egyptian Journal of Petroleum 2017, 26, 103–110, doi:10.1016/j.ejpe.2016.02.001.
  7. Yadav, S.P.R.; Saravanan, C.G.; Kannan, M. Influence of injection timing on di diesel engine characteristics fueled with waste transformer oil. Alexandria Engineering Journal 2015, 54, 881–888, doi:10.1016/j.aej.2015.07.008.
  8. Milano, J.; Silitonga, A.S.; Tiong, S.K.; Ong, M.Y.; Masudi, A.; Hassan, M.H.; Nur, T. Bin; Nurulita, B.; Sebayang, A.H.; Sebayang, A.R. A Comprehensive exploration of jatropha curcas biodiesel production as a viable alternative feedstock in the fuel industry – Performance evaluation and feasibility analysis. Mechanical Engineering for Society and Industry 2024, 4, 17–37, doi:10.31603/mesi.10610.
  9. Supriyadi, S.; Purwanto, P.; Anggoro, D.D.; Hermawan, H. The Effects of Sodium Hydroxide (NaOH) Concentration and Reaction Temperature on The Properties of Biodiesel from Philippine Tung (Reutealis Trisperma) Seeds. Automotive Experiences 2022, 5, 57–67, doi:10.31603/ae.5986.
  10. Thanikodi, S.; Rangappa, S.M.; Sebayang, A.H.; Siengchin, S. Performance of IC Engines Using Chicken Waste as Biofuel, CNT and MnO Nano-Biofuels and Diesel Fuel: A Comparation Study. Automotive Experiences 2023, 6, 395–406, doi:10.31603/ae.9556.
  11. Al-Saadi, A.; Mathan, B.; He, Y. Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design 2020, 162, 238–248, doi:10.1016/j.cherd.2020.08.018.
  12. Kolakoti, A.; Setiyo, M.; Waluyo, B. Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization. Mechanical Engineering for Society and Industry 2021, 1, 22–30, doi:10.31603/mesi.5320.
  13. Suherman, S.; Abdullah, I.; Sabri, M.; Turmuzi, M.; Silitonga, A.S.; Dharma, S.; Yusfiani, M. A Review of Properties, Engine Performance, Emission Characteristics and Material Compatibility Biodiesel From Waste Cooking Oil (WCO). Automotive Experiences 2023, doi:10.31603/ae.10128.
  14. Mujiarto, S.; Sudarmanta, B.; Fansuri, H.; Saleh, A.R.; Fajarningrum, N.D.; Hayati, N. Characterization of diesel engines fueled by dual fuel syngas gasification refused derived fuel (RDF) and dexlite. BIS Energy and Engineering 2024, 1, V124039–V124039.
  15. Nugroho, A.; Fatwa, M.A.; Hurip, P.D.; Murtado, H.; Kurniasari, L. Pyrolysis of plastic fishing gear waste for liquid fuel production: Characterization and engine performance analysis. BIS Energy and Engineering 2024, 1, V124040–V124040, doi:10.31603/biseeng.41.
  16. Sunaryo, S.; Suyitno, S.; Arifin, Z.; Setiyo, M.; Hermawan, H.; Irfan, A. Improving oil quality from waste pyrolysis using natural zeolite catalysts: towards sustainable resource recovery. BIS Energy and Engineering 2024, 1, V124037–V124037, doi:10.31603/biseeng.65.
  17. Herraprastanti, E.H.; Ashraf, M.A.; Wahyusari, R.; Alfreda, D.Y. Fuel from plastic waste using the pyrolysis method. BIS Energy and Engineering 2024, 1, V124011–V124011, doi:10.31603/biseeng.34.
  18. Wolak, A.; Zając, G. An empirical study of the variables affecting the frequency of engine oil change in the environmental aspect. Rocznik Ochrona Srodowiska 2019, 21, 738–766.
  19. Waluyo, B.; Pujiarto, B.; Ardana, N.; Sholiah, A.; Rochman, M.L.; Adi, A.T. Optimizing energy harvesting from waste motor oil through steam reforming: A path to efficient combustion and emissions reduction. Mechanical Engineering for Society and Industry 2023, 3, 86–92, doi:10.31603/mesi.10362.
  20. Pinheiro, C.T.; Ascensão, V.R.; Cardoso, C.M.; Quina, M.J.; Gando-Ferreira, L.M. An overview of waste lubricant oil management system: Physicochemical characterization contribution for its improvement. Journal of Cleaner Production 2017, 150, 301–308, doi:10.1016/j.jclepro.2017.03.024.
  21. Gan, X.; Chen, L.; Chen, X.; Pan, S.; Pan, H. Agricultural bio-waste for removal of organic and inorganic contaminants from waste diesel engine oil. Journal of Hazardous Materials 2021, 414, 124906, doi:10.1016/j.jhazmat.2020.124906.
  22. Thanikachalam, J.; Karthikeyan, S. Study on extraction of pollutant free flammable fuel from contaminated automobile waste lube oil. Journal of Achievements in Materials and Manufacturing Engineering 2020, 2, 78–84, doi:10.5604/01.3001.0014.3348.
  23. Wang, X.; Ni, P. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil. Energy Conversion and Management 2017, 133, 275–283, doi:10.1016/j.enconman.2016.12.018.
  24. Zare, A.; Bodisco, T.A.; Jafari, M.; Verma, P.; Yang, L.; Babaie, M.; Rahman, M..; Banks, A.; Ristovski, Z.D.; Brown, R.J.; et al. Cold-start NOx emissions: Diesel and waste lubricating oil as a fuel additive. Fuel 2021, 286, 119430, doi:10.1016/j.fuel.2020.119430.
  25. Maceiras, R.; Alfonsín, V.; Morales, F.J. Recycling of waste engine oil for diesel production. Waste Management 2017, 60, 351–356, doi:10.1016/j.wasman.2016.08.009.
  26. Effendy, M.; Surono, A.; Saputra, E.; Nugraha, N.A. Performance and smoke opacity of compression-ignition engine using used-waste oil. Case Studies in Thermal Engineering 2021, 26, 101063, doi:10.1016/j.csite.2021.101063.
  27. Arpa, O.; Yumrutaş, R.; Argunhan, Z. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission. Fuel Processing Technology 2010, 91, 1241–1249, doi:10.1016/j.fuproc.2010.04.004.
  28. Li, X.; Zhai, J.; Li, H.; Gao, X. An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis. Fuel Processing Technology 2020, 199, 106245, doi:10.1016/j.fuproc.2019.106245.
  29. Dzida, M.; Prusakiewicz, P. The effect of temperature and pressure on the physicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel 2008, 87, 1941–1948, doi:10.1016/j.fuel.2007.10.010.
  30. Özgür, C.; Tosun, E. Prediction of density and kinematic viscosity of biodiesel by artificial neural networks. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2017, 39, 985–991, doi:10.1080/15567036.2017.1280563.
  31. Cappenberg, A.D. Pengaruh Penggunaan Bahan Bakar Solar, Biosolar Dan Pertamina Dex Terhadap Prestasi Motor Diesel Silinder Tunggal. Jurnal Konversi Energi dan Manufaktur 2017, 4, 70–74, doi:10.21009/jkem.4.2.3.
  32. Rozaq, F.; Wirawan, W.A.; Hari, B.W.; Dadang, S.A.; Nurtanto, M. The influence of centrifugal particulate matter reducer on gas opacity and fuel consumption of inspection train. Journal of Physics: Conference Series 2020, 1700, doi:10.1088/1742-6596/1700/1/012050.
  33. Seifi, M.R.; Hassan-Beygi, S.R.; Ghobadian, B.; Desideri, U.; Antonelli, M. Experimental investigation of a diesel engine power, torque and noise emission using water-diesel emulsions. Fuel 2016, 166, 392–399, doi:10.1016/j.fuel.2015.10.122.
  34. Katekaew, S.; Suiuay, C.; Senawong, K.; Seithtanabutara, V.; Intravised, K.; Laloon, K. Optimization of performance and exhaust emissions of single-cylinder diesel engines fueled by blending diesel-like fuel from Yang-hard resin with waste cooking oil biodiesel via response surface methodology. Fuel 2021, 304, 121434, doi:10.1016/j.fuel.2021.121434.
  35. Prasanna Raj Yadav, S.; Saravanan, C.G.; Karthick, S.; Senthilnathan, K.; Gnanaprakash, A. Fundamental droplet evaporation and engine application studies of an alternate fuel produced from waste transformer oil. Fuel 2020, 259, 116253, doi:10.1016/j.fuel.2019.116253.
  36. Hardiyanto, C.; Prawoto, P. Effect of Diethyl Ether on Performance and Exhaust Gas Emissions of Heavy-Duty Diesel Engines Fueled with Biodiesel-Diesel Blend (B35). Automotive Experiences 2023, 6, 687–701, doi:10.31603/ae.10311.
  37. Ooi, J.B.; Kau, C.C.; Manoharan, D.N.; Wang, X.; Tran, M.-V.; Hung, Y.M. Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend. Energy 2023, 281, 128350, doi:10.1016/j.energy.2023.128350.
  38. Al-Bawwat, A.K.; Gomaa, M.R.; Cano, A.; Jurado, F.; Alsbou, E.M. Extraction and characterization of Cucumis melon seeds (Muskmelon seed oil) biodiesel and studying its blends impact on performance, combustion, and emission characteristics in an internal combustion engine. Energy Conversion and Management: X 2024, 23, 100637, doi:10.1016/j.ecmx.2024.100637.
  39. Pelletier, E.; Brennan, S. Diesel Engine Characterization and Performance Scaling Via Brake Specific Fuel Consumption Map Dimensional Analysis. In Proceedings of the Proceedings of ASME 2019 Dynamic Systems and Control Conference; 2019; p. V002T11A003.
  40. Majedi, F.; Setiyaningrum, D.; Hidayahtullah, S.M.T.; Abbas, A. Effects of injection pressure on output power, bte, sfc and opacity in a typical single-cylinder diesel engine. Automotive Experiences 2020, 3, 20–26, doi:10.31603/ae.v3i1.3006.
  41. Predojević, Z.J. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel 2008, 87, 3522–3528, doi:10.1016/j.fuel.2008.07.003.
  42. Sathish, T.; Surakasi, R.; KishoreT, L.; Rathinasamy, S.; Ağbulut, Ü.; Shaik, S.; Park, S.G.; Afzal, A. Waste to fuel: Pyrolysis of waste transformer oil and its evaluation as alternative fuel along with different nanoparticles in CI engine with exhaust gas recirculation. Energy 2023, 267, 126595, doi:10.1016/j.energy.2022.126595.
  43. Pandey, R.K.; Rehman, A.; Sarviya, R.M. Impact of alternative fuel properties on fuel spray behavior and atomization. Renewable and Sustainable Energy Reviews 2012, 16, 1762–1778, doi:10.1016/j.rser.2011.11.010.
  44. Suh, H.K.; Lee, C.S. A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine. Renewable and Sustainable Energy Reviews 2016, 58, 1601–1620.
  45. Zhou, X.; Li, T.; Lai, Z.; Wei, Y. Modeling diesel spray tip and tail penetrations after end-of-injection. Fuel 2019, 237, 442–456, doi:10.1016/j.fuel.2018.10.029.
  46. Hoang, A.T. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology 2021, 20, 299–311, doi:10.1080/20464177.2018.1532734.
  47. Taghavifar, H.; Khalilarya, S.; Jafarmadar, S. Engine structure modifications effect on the flow behavior, combustion, and performance characteristics of di diesel engine. Energy Conversion and Management 2014, 85, 20–32, doi:10.1016/j.enconman.2014.05.076.
  48. Liu, H.; Ma, J.; Dong, F.; Yang, Y.; Liu, X.; Ma, G.; Zheng, Z.; Yao, M. Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine. Energy Conversion and Management 2018, 171, 1787–1800, doi:10.1016/j.enconman.2018.06.089.
  49. Dzida, M.; Jȩzak, S.; Sumara, J.; Zarska, M.; Góralski, P. High pressure physicochemical properties of biodiesel components used for spray characteristics in diesel injection systems. Fuel 2013, 111, 165–171, doi:10.1016/j.fuel.2013.04.031.
  50. Chuah, L.F.; Bokhari, A.; Asif, S.; Klemeš, J.J.; Dailin, D.J.; Enshasy, H. El; Yusof, A.H.M. A Review of Performance and Emission Characteristic of Engine Diesel Fuelled by Biodiesel. Chemical Engineering Transactions 2022, 94, 1099–1104, doi:10.3303/CET2294183.
  51. Chen, H.; Wang, J.; Shuai, S.; Chen, W. Study of oxygenated biomass fuel blends on a diesel engine. Fuel 2008, 87, 3462–3468, doi:10.1016/j.fuel.2008.04.034.
  52. Tesfa, B.; Gu, F.; Mishra, R.; Ball, A.D. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends. Energy Conversion and Management 2013, 71, 217–226, doi:10.1016/j.enconman.2013.04.005.
  53. Prasanna Raj Yadav, S.; Saravanan, C.G.; Vallinayagam, R.; Vedharaj, S.; Roberts, W.L. Fuel and engine characterization study of catalytically cracked waste transformer oil. Energy Conversion and Management 2015, 96, 490–498, doi:10.1016/j.enconman.2015.02.051.
  54. Arjharn, W.; Liplap, P.; Maithomklang, S.; Thammakul, K.; Chuepeng, S.; Sukjit, E. Distilled Waste Plastic Oil as Fuel for a Diesel Engine: Fuel Production, Combustion Characteristics, and Exhaust Gas Emissions. ACS Omega 2022, 7, 9720–9729, doi:10.1021/acsomega.1c07257.
  55. Mohamed Musthafa, M. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends. Applied Thermal Engineering 2016, 96, 607–612, doi:10.1016/j.applthermaleng.2015.12.011.
  56. Fahd, M.E.A.; Wenming, Y.; Lee, P.S.; Chou, S.K.; Yap, C.R. Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition. Applied Energy 2013, 102, 1042–1049, doi:10.1016/j.apenergy.2012.06.041.