Main Article Content

Abstract

Bio-composite materials have taken an extensive interest in research over the years due to their excellent properties, such as excellent mechanical and physical properties, stiffness, and low density/lightweight. The exceptional properties of bio-composite materials have had a widespread application in several industries, such as; the packaging industry, construction, automotive, and other related engineering fields. This research investigates mechanical, physical, and microstructure properties of Sansevieria Trifasciata (STE) natural fiber, -reinforced Vinyl Ester (STF/VE) bio-composite. The mechanical and physical properties of STF/VE bio-composites, including the tensile strength and density, are investigated through fibre preparation, orientation, and fibre volume fraction parameters. The STF/VE bio-composite tensile strength coupon is manufactured using the bio-composite transfer moulding (BTM) process and with pressure moulding. The Taguchi experimental design and analysis of variance (ANOVA) are selected to investigate the effect of variables on the mechanical properties model. The alkali preparation of STF, unidirectional fibre orientation, and fibre volume fraction improve tensile strength. Non-alkali treatment and random fibre orientatio, on the other hand, result in a reduction of density. The results of the ANOVA analysis show that the fibre volume fraction (wt.%) is the variable that most significantly affects the tensile strength and density responses, with contributions of 50.57% of tensile strength and 51.34% of density, respectively. Based on the optimization results, the STF/VE with alkali treatment, unidirectional, and 15 w.t.% is chosen as the best bio-composite formulation, with the best tensile strength-density balance. It indicates that the optimum parameter was successfully achieved among the samples examined in this work.

Keywords

Alkali treatment Bio-composite Transfer moulding Sansevieria Trifasciata fibres Vinyl ester

Article Details

References

  1. S. M. B. Respati, H. Purwanto, I. Fakhrudin, and P. Prayitno, “Tensile Strength and Density Evaluation of Composites from Waste Cotton Fabrics and High-Density Polyethylene (HDPE): Contributions to the Composite Industry and a Cleaner Environment,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 41–47, 2021.
  2. R. M. N. Arib, S. M. Sapuan, M. M. H. M. Ahmad, M. T. Paridah, and H. M. D. Khairul Zaman, “Mechanical properties of pineapple leaf fibre reinforced polypropylene composites,” Materials and Design, vol. 27, no. 5, pp. 391–396, 2006, doi: 10.1016/j.matdes.2004.11.009.
  3. R. Widyorini, N. H. Sari, M. Setiyo, and G. Refiadi, “The Role of Composites for Sustainable Society and Industry,” Mechanical Engineering for Society and Industry, vol. 1, no. 2, pp. 48–53, 2021.
  4. Y. Habibi, W. K. El-Zawawy, M. M. Ibrahim, and A. Dufresne, “Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues,” Composites Science and Technology, vol. 68, no. 7–8, pp. 1877–1885, 2008, doi: 10.1016/j.compscitech.2008.01.008.
  5. K. R. Diptaseptian, Wijianto, and P. I. Purboputro, “The role of catalysts on composites properties: A case study on motorcycle body cover,” Automotive Experiences, vol. 2, no. 2, pp. 59–66, 2019, doi: 10.31603/ae.v2i2.2731.
  6. M. Y. Lyu and T. G. Choi, “Research trends in polymer materials for use in lightweight vehicles,” International Journal of Precision Engineering and Manufacturing, vol. 16, no. 1, pp. 213–220, 2015, doi: 10.1007/s12541-015-0029-x.
  7. S. M. Sapuan, H. Ismail, and E. S. Zainudin, Natural fiber reinforced vinyl ester and vinyl polymer composites development, characterization and applications. Chennei: Woodhead Publishing Limited, 2018.
  8. F. M. Al-Oqla and S. M. Sapuan, “Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry,” Journal of Cleaner Production, vol. 66, pp. 347–354, 2014, doi: 10.1016/j.jclepro.2013.10.050.
  9. W. Stichel, Handbook of comparitative world steel standards; USA-United Kingdom-Germany-France-Russia-Japan-Canada-Australia-International. Hrsg.: Albert & Melilli, 552 Seiten. ASTM Data Series DS 67, American Society for Testing and Materials, PA, USA 1996, £ 195.00, vol. 48, no. 6. 1997.
  10. R. D. J. Johnson, V. Arumugaprabu, and T. J. Ko, “Mechanical Property, Wear Characteristics, Machining and Moisture Absorption Studies on Vinyl Ester Composites – a Review,” Silicon, vol. 11, no. 5, pp. 2455–2470, 2019, doi: 10.1007/s12633-018-9828-x.
  11. M. Li et al., “Recent advancements of plant-based natural fiber–reinforced composites and their applications,” Composites Part B: Engineering, vol. 200, no. February, 2020, doi: 10.1016/j.compositesb.2020.108254.
  12. M. M. Singh et al., “Determination of Strength Parameters of Glass Fibers Reinforced Composites for Engineering Applications,” Silicon, vol. 12, no. 1, pp. 1–11, 2020, doi: 10.1007/s12633-019-0078-3.
  13. Manickam Chinnappan, J. Kumar, A. Athijayamani, and D. Natesan, “Mechanical and wear behaviors of untreated and alkali treated Roselle fiber-reinforced vinyl ester composite,” Journal of Engg. Research, vol. 3, no. 3, pp. 97–109, 2015, doi: 10.7603/s40632-015-0025-4.
  14. R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusria, “The Effects of Chemical Treatment on the Structural and Thermal, Physical, and Mechanical and Morphological Properties of Roselle Fiber-Reinforced Vinyl Ester Composites,” Polymers and Polymer Composites, vol. 16, no. 2, pp. 101–113, 2015, doi: 10.1002/pc.
  15. P. N. Shah, S. Dev, Y. Lee, and C. J. Hansen, “Processing and mechanical properties of bio-derived vinyl ester resin-based composites,” Journal of Applied Polymer Science, vol. 134, no. 13, pp. 1–10, 2017, doi: 10.1002/app.44642.
  16. C. Kong, H. Lee, and H. Park, “Design and manufacturing of automobile hood using natural composite structure,” Composites Part B: Engineering, vol. 91, pp. 18–26, 2016, doi: 10.1016/j.compositesb.2015.12.033.
  17. R. Gopinath, R. Poopathi, and S. S. Saravanakumar, “Characterization and structural performance of hybrid fiber-reinforced composite deck panels,” Advanced Composites and Hybrid Materials, vol. 2, no. 1, pp. 115–124, 2019, doi: 10.1007/s42114-019-00076-w.
  18. R. Kant and P. Alagh, “Extraction of Fiber from Sansevieria Trifasciata Plant and its Properties,” International Journal of Science and Research, vol. 4, no. 7, pp. 2319–7064, 2013.
  19. P. H. Sankar, Y. V. M. Reddy, K. H. Reddy, M. A. Kumar, and A. Ramesh, “The Effect of Fiber Length on Tensile Properties of Polyester Resin Composites Reinforced by the Fibers of Sansevieria trifasciata,” International Letters of Natural Sciences, vol. 8, pp. 7–13, 2014, doi: 10.18052/www.scipress.com/ilns.8.7.
  20. N. E. Zakaria, I. Ahmad, W. Z. Wan Mohamad, and A. Baharum, “Effects of fibre size on sansevieria trifasciata/natural rubber/high density polyethylene biocomposites,” Malaysian Journal of Analytical Sciences, vol. 22, no. 6, pp. 1057–1064, 2018, doi: 10.17576/mjas-2018-2206-16.
  21. A. D. Wolela, “Extraction and Characterization of Natural Cellulose Fibers from Sanseveria Trifasciata Plant,” Trends in Textile Engineering & Fashion Technology, vol. 5, no. 2, pp. 630–634, 2019, doi: 10.31031/tteft.2019.05.000609.
  22. A. D. Shieddieque, Mardiyati, R. Suratman, and B. Widyanto, “The Effect of Dibutyl phthalate plasticizer to Impregnation and Mechanical Properties of Biocomposite Sansevieria trifasciata/High Impact Polypropylene,” IOP Conference Series: Materials Science and Engineering, vol. 547, no. 1, 2019, doi: 10.1088/1757-899X/547/1/012048.
  23. Mardiyati, Steven, R. R. Rizkiansyah, A. Senoaji, and R. Suratman, “Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber,” AIP Conference Proceedings, vol. 1725, no. April 2016, 2016, doi: 10.1063/1.4945497.
  24. A. Budianto, S. B. Jumawan, and A. Abdulah, “Single Response Optimization Of Dty-150d / 96f Yarn Texturing Process Using Taguchi Method,” Arena Tekstil, vol. 35, no. 2, pp. 77–86, 2020, doi: 10.31266/at.v35i2.6094.
  25. J. K. Ranjan and S. Goswami, “Mechanical and thermomechanical properties of vinyl ester/polyurethane IPN based nano-composites,” Polymers and Polymer Composites, vol. 29, no. 9, pp. S117–S129, 2021, doi: 10.1177/0967391120987349.
  26. S. Jaswal and B. Gaur, “New trends in vinyl ester resins,” Reviews in Chemical Engineering, vol. 30, no. 6, pp. 567–581, 2014, doi: 10.1515/revce-2014-0012.
  27. E. J. Robinette, S. Ziaee, and G. R. Palmese, “Toughening of vinyl ester resin using butadiene-acrylonitrile rubber modifiers,” Polymer, vol. 45, no. 18, pp. 6143–6154, 2004, doi: 10.1016/j.polymer.2004.07.003.
  28. J. Jia, Z. Huang, and Y. Qin, “Dynamic and mechanical properties of vinyl ester/epoxy interpenetrating polymer networks,” High Performance Polymers, vol. 25, no. 6, pp. 652–657, 2013, doi: 10.1177/0954008313477878.
  29. R. Ollier, A. Stocchi, E. Rodriguez, and V. Alvarez, “Effect of Thermoplastic Incorporation on the Performance of Thermosetting Matrix,” Materials Sciences and Applications, vol. 03, no. 07, pp. 442–447, 2012, doi: 10.4236/msa.2012.37062.
  30. D. Dehghan Baniani, S. A. J. Jahromi, and S. Mojtaba Zebarjad, “A study on role of nanosized SiO2 on deformation mechanism of vinyl ester,” Bulletin of Materials Science, vol. 37, no. 7, pp. 1677–1683, 2014, doi: 10.1007/s12034-014-0730-x.
  31. A. D. Shieddieque, Mardiyati, R. Suratman, and B. Widyanto, “Preparation and Characterization of Sansevieria trifasciata Fiber/High-Impact Polypropylene and Sansevieria trifasciata Fiber/Vinyl Ester Biocomposites for Automotive Applications,” International Journal of Technology, vol. 12, no. 3, pp. 549–560, 2021, doi: 10.14716/ijtech.v12i3.2841.
  32. G. Wypych, Handbook of Polymers, 2nd ed. Scarborough: ChemTec Publishing, 2016.
  33. ASTM International, “ASTM D3039/D3039M: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM Standards. pp. 1–13, 2017.
  34. V. V.D. Sahithi, T. Malayadri, and N. Srilatha, “Optimization of turning parameters on surface roughness based on taguchi technique,” Materials Today: Proceedings, vol. 18, pp. 3657–3666, 2019, doi: 10.1016/j.matpr.2019.07.299.
  35. S. Sukarman, A. D. Shieddieque, C. Anwar, N. Rahdiana, and A. I. Ramadhan, “Optimization of Powder Coating Process Parameters in Mild Steel (Spcc-Sd) To Improve Dry Film Thickness,” Journal of Applied Engineering Science, vol. 19, no. 2, pp. 1–9, 2021, doi: 10.5937/jaes0-26093.
  36. K. Khoirudin, S. Sukarman, N. Rahdiana, and A. Fauzi, “Analisis Fenomena Spring-Back / Spring-Go Factor Pada Lembaran Baja Karbon Rendah Menggunakan Pendekatan Eksperimental,” Jurnal Teknologi, vol. 14, no. 1, pp. 27–38, 2022, doi: 10.24853/jurtek.14.1.27-38.
  37. S. F. Arnold, Design of Experiments with MINITAB, vol. 60, no. 2. 2006.
  38. S. Sukarman, A. Abdulah, D. A. Rajab, and C. Anwar, “Optimization of Tensile-Shear Strength in the Dissimilar Joint of Zn-Coated Steel and Low Carbon Steel,” Automotive Experiences, vol. 3, no. 3, pp. 115–125, 2020.
  39. S. Sukarman, A. Abdulah, A. D. Shieddieque, N. Rahdiana, and K. Khoirudin, “Optimization of the Resistance Spot Welding Process of SECC-AF and SGCC Galvanized Steel Sheet using the Taguchi Method,” SINERGI, vol. 25, no. 3, pp. 319–328, 2021, doi: https://dx.doi.org/10.22441/sinergi.2021.3.9.
  40. R. Sukmawan, H. Takagi, and A. N. Nakagaito, “Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber,” Composites Part B: Engineering, vol. 84, pp. 9–16, 2016, doi: 10.1016/j.compositesb.2015.08.072.
  41. A. Couture, G. Lebrun, and L. Laperrière, “Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers,” Composite Structures, vol. 154, pp. 286–295, 2016, doi: 10.1016/j.compstruct.2016.07.069.
  42. P. Vimalanathan, G. Suresh, M. Rajesh, R. Manikandan, S. K. Rajesh Kanna, and V. Santhanam, “A Study on Mechanical and Morphological Analysis of Banana/Sisal Fiber Reinforced IPN Composites,” Fibers and Polymers, vol. 22, no. 8, pp. 2261–2268, 2021, doi: 10.1007/s12221-021-0917-x.
  43. A. D. Shieddieque, Mardiyati, R. Suratman, and B. Widyanto, “The effect of alkaline treatment and fiber orientation on impact resistant of bio-composites Sansevieria trifasciata fiber/polypropylene as automotive components material,” in AIP Conference Proceedings, 2018, vol. 1945, doi: 10.1063/1.5030263.
  44. S. Goswami and J. K. Ranjan, “Study of Mechanical and Thermomechanical Properties of Vinyl Ester/Polyurethane Interpenetrating Polymer Network Based Hybrid Composites,” Fibers and Polymers, vol. 21, no. 5, pp. 1096–1114, 2020, doi: 10.1007/s12221-020-9338-5.
  45. S. Shafee, B. B. Naik, and K. Sammaiah, “Resistance Spot Weld Quality Characteristics Improvement By Taguchi Method,” Materials Today: Proceedings, vol. 2, no. 4–5, pp. 2595–2604, 2015, doi: 10.1016/j.matpr.2015.07.215.
  46. C. B. Lacovara, “Why out of autoclave processing is good for the composites industry,” CompositesWorld, 2013.

Most read articles by the same author(s)