Main Article Content


Using lithium-ion batteries has emerged as a viable approach to lessen the negative effects of fossil fuel use. LiFePO4 (LFP) is one of the lithium-ion batteries that are eco-friendly and safer than others. However, LFP has a main limitation with the poor rate performance due to its low electronic conductivity number. This study aims to present a bibliometric review of the analysis using VOSviewer of surface modification using carbon coating of metal-organic frameworks (MOFs) to improve the challenge of synthesis, structure, electrochemical stability, and performance of LFP. The results of this study showed that surface modification of LiFePO4 electrodes using carbon compounds produced from MOFs improved the efficiency of electrochemical energy storage and conversion technologies. High levels of porosity and customizable characteristics are offered by metal-organic frameworks (MOFs) ideal for surface modification which improves the battery conductivity. The bibliometric analysis showed that research on lithium-ion batteries is currently receiving attention, a sign of its significance and rising popularity. It is suggested for researchers especially Indonesian researchers to contribute more to this field.


Carbon coating LiFePO4 Lithium-ion batteries Metal-organic frameworks Surface modification

Article Details


  1. A. Eftekhari, “Lithium batteries for electric vehicles: from economy to research strategy,” ACS Sustainable Chem. Eng., vol. 7, no. 6, pp. 5602–5613, 2019, doi: 10.1021/acssuschemeng.8b01494.
  2. L. Wang, “Discussion about the Health Effects, Causes, and Probable Solutions to the Air Pollutions Caused by Vehicle Exhaust Emissions,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 218, no. 1, p. 12131, doi: 10.1088/1755-1315/218/1/012131.
  3. A. Masias, J. Marcicki, and W. A. Paxton, “Opportunities and challenges of lithium ion batteries in automotive applications,” ACS energy letters, vol. 6, no. 2, pp. 621–630, 2021, doi: 10.1021/acsenergylett.0c02584.
  4. M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler, “Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA,” Batteries, vol. 7, no. 3, p. 51, 2021, doi: 10.3390/batteries7030051.
  5. N. Aguiló-Aguayo, D. Hubmann, F. U. Khan, S. Arzbacher, and T. Bechtold, “Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors,” Scientific Reports, vol. 10, no. 1, p. 5565, 2020, doi: 10.1038/s41598-020-62553-3.
  6. G. Gherardi, I. Deligiannis, E. Montanari, A. Theodorakopoulou, and V. Piccini, “Remote Battery Monitoring System enforcing safety features in Electric Vehicles,” in 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), 2021, pp. 187–192, doi: 10.1109/MetroAutomotive50197.2021.9502862.
  7. Q. Liu, S. Liu, H. Liu, H. Qi, C. Ma, and L. Zhao, “Evaluation of LFP battery SOC estimation using auxiliary particle filter,” Energies, vol. 12, no. 11, p. 2041, 2019, doi: 10.3390/en12112041.
  8. G. Chen, S. Jiang, M. Xie, and F. Yang, “A hybrid DNN-KF model for real-time SOC estimation of lithium-ion batteries under different ambient temperatures,” in 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), 2022, pp. 1–5, doi: 10.1109/PHM-Yantai55411.2022.9942155.
  9. I. Baccouche, B. Manai, and N. E. Ben Amara, “SoC estimation of LFP battery based on EKF observer and a full polynomial Parameters-Model,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1–5, doi: 10.1109/VTC2020-Spring48590.2020.9129449.
  10. M. Nizam, H. Maghfiroh, F. Nur Kuncoro, and F. Adriyanto, “Dual battery control system of lead acid and lithium ferro phosphate with switching technique,” World Electric Vehicle Journal, vol. 12, no. 1, p. 4, 2021, doi: 10.3390/WEVJ12010004.
  11. P. N. Didwal, R. Verma, A. Nguyen, H. V Ramasamy, G. Lee, and C. Park, “Improving Cyclability of All‐Solid‐State Batteries via Stabilized Electrolyte–Electrode Interface with Additive in Poly (propylene carbonate) Based Solid Electrolyte,” Advanced Science, vol. 9, no. 13, p. 2105448, 2022, doi: 10.1002/advs.202105448.
  12. Y. Wang, T. Wang, X. Zhao, and J. Liu, “Non-equilibrium kinetics for improving ionic conductivity in garnet solid electrolyte,” Materials Horizons, vol. 10, no. 4, pp. 1324–1331, 2023, doi: 10.1039/d2mh01311h.
  13. X. Wang et al., “Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries,” Chemical Engineering Journal, vol. 379, p. 122371, 2020, doi: 10.1016/j.cej.2019.122371.
  14. H. Walvekar, H. Beltran, S. Sripad, and M. Pecht, “Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries,” Ieee Access, vol. 10, pp. 63834–63843, 2022, doi: 10.1109/ACCESS.2022.3182726.
  15. P. Mathur et al., “In situ metal organic framework (ZIF-8) and mechanofusion-assisted MWCNT coating of LiFePO4/C composite material for lithium-ion batteries,” Batteries, vol. 9, no. 3, p. 182, 2023, doi: 10.3390/batteries9030182.
  16. X. Xu, Z. Hao, H. Wang, J. Liu, and H. Yan, “Mesoporous carbon derived from ZIF-8 for improving electrochemical performances of commercial LiFePO4,” Materials Letters, vol. 197, pp. 209–212, 2017, doi: 10.1016/j.matlet.2017.02.093.
  17. Z. Wang et al., “Enhancing ion transport: function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries,” ACS Applied Energy Materials, vol. 3, no. 5, pp. 4265–4274, 2020, doi: 10.1021/acsaem.9b02543.
  18. A. N. Mustapha, H. Onyeaka, O. Omoregbe, Y. Ding, and Y. Li, “Latent heat thermal energy storage: A bibliometric analysis explicating the paradigm from 2000–2019,” Journal of Energy Storage, vol. 33, p. 102027, 2021, doi: 10.1016/j.est.2020.102027.
  19. L. Boquera, J. R. Castro, A. L. Pisello, and L. F. Cabeza, “Research progress and trends on the use of concrete as thermal energy storage material through bibliometric analysis,” Journal of Energy Storage, vol. 38, p. 102562, 2021, doi: 10.1016/j.est.2021.102562.
  20. J. K. Tamala, E. I. Maramag, K. A. Simeon, and J. J. Ignacio, “A bibliometric analysis of sustainable oil and gas production research using VOSviewer,” Cleaner Engineering and Technology, vol. 7, p. 100437, 2022, doi: 10.1016/j.clet.2022.100437.
  21. A. Kolakoti, M. Setiyo, D. Novia, A. Husaeni, and A. B. Dani, “Enhancing heat transfer performance of automotive car radiator using camphor nanoparticles : experimental study with bibliometric analysis,” Teknomekanik, vol. 6, no. 2, pp. 47–67, 2023, doi: 10.24036/teknomekanik.v6i2.25072.
  22. M. Setiyo, D. Yuvenda, and O. D. Samuel, “The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis,” Indonesian Journal of Science and Technology, vol. 6, no. 3, pp. 469–490, 2021, doi:
  23. S. Chen, J. Xiong, Y. Qiu, Y. Zhao, and S. Chen, “A bibliometric analysis of lithium-ion batteries in electric vehicles,” Journal of Energy Storage, vol. 63, p. 107109, 2023, doi: 10.1016/j.est.2023.107109.
  24. J. Lan et al., “In-depth bibliometric analysis on research trends in fault diagnosis of lithium-ion batteries,” Journal of Energy Storage, vol. 54, p. 105275, 2022, doi: 10.1016/j.est.2022.105275.
  25. W. Vermeer, G. R. C. Mouli, and P. Bauer, “A comprehensive review on the characteristics and modeling of lithium-ion battery aging,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2205–2232, 2021, doi: 10.1109/TTE.2021.3138357.
  26. X. Han et al., “A review on the key issues of the lithium ion battery degradation among the whole life cycle,” ETransportation, vol. 1, p. 100005, 2019, doi: 10.1016/j.etran.2019.100005.
  27. Y. Miao, P. Hynan, A. Von Jouanne, and A. Yokochi, “Current Li-ion battery technologies in electric vehicles and opportunities for advancements,” Energies, vol. 12, no. 6, p. 1074, 2019, doi: 10.3390/en12061074.
  28. S. He, S. Huang, S. Wang, I. Mizota, X. Liu, and X. Hou, “Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications,” Energy & Fuels, vol. 35, no. 2, pp. 944–964, 2020, doi: 10.1021/acs.energyfuels.0c02948.
  29. G. Kaur and B. D. Gates, “Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance,” Journal of The Electrochemical Society, vol. 169, no. 4, p. 43504, 2022, doi: 10.1149/1945-7111/ac60f3.
  30. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries,” Journal of the electrochemical society, vol. 144, no. 4, p. 1188, 1997, doi: 10.1149/1.1837571.
  31. X. Zhang, E. Sahraei, and K. Wang, “Li-ion battery separators, mechanical integrity and failure mechanisms leading to soft and hard internal shorts,” Scientific reports, vol. 6, no. 1, p. 32578, 2016, doi: 10.1038/srep32578.
  32. S. Luiso and P. Fedkiw, “Lithium-ion battery separators: Recent developments and state of art,” Current Opinion in Electrochemistry, vol. 20, pp. 99–107, 2020, doi: 10.1016/j.coelec.2020.05.011.
  33. C. Martinez-Cisneros, C. Antonelli, B. Levenfeld, A. Varez, and J. Y. Sanchez, “Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries,” Electrochimica Acta, vol. 216, pp. 68–78, 2016, doi: 10.1016/j.electacta.2016.08.105.
  34. H. Zhang, M.-Y. Zhou, C.-E. Lin, and B.-K. Zhu, “Progress in polymeric separators for lithium ion batteries,” RSC advances, vol. 5, no. 109, pp. 89848–89860, 2015, doi: 10.1039/c5ra14087k.
  35. Y. Li, H. Pu, and Y. Wei, “Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion,” Electrochimica Acta, vol. 264, pp. 140–149, 2018, doi: 10.1016/j.electacta.2018.01.114.
  36. M. Stich, M. Göttlinger, M. Kurniawan, U. Schmidt, and A. Bund, “Hydrolysis of LiPF6 in carbonate-based electrolytes for lithium-ion batteries and in aqueous media,” The Journal of Physical Chemistry C, vol. 122, no. 16, pp. 8836–8842, 2018, doi: 10.1021/acs.jpcc.8b02080.
  37. Y. Ha et al., “Effect of water concentration in LiPF6-based electrolytes on the formation, evolution, and properties of the solid electrolyte interphase on Si anodes,” ACS Applied Materials & Interfaces, vol. 12, no. 44, pp. 49563–49573, 2020, doi: 10.1021/acsami.0c12884.
  38. Z. Chen et al., “Effect of trace hydrofluoric acid in a LiPF 6 electrolyte on the performance of a Li–organic battery with an N-heterocycle based conjugated microporous polymer as the cathode,” Journal of Materials Chemistry A, vol. 7, no. 27, pp. 16347–16355, 2019, doi: 10.1039/c9ta01810g.
  39. T. Satyavani, A. S. Kumar, and P. S. V. S. Rao, “Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review,” Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 178–188, 2016, doi: 10.1016/j.jestch.2015.06.002.
  40. R. B Araujo, J. S De Almeida, A. Ferreira da Silva, and R. Ahuja, “Insights in the electronic structure and redox reaction energy in LiFePO4 battery material from an accurate Tran-Blaha modified Becke Johnson potential,” Journal of Applied Physics, vol. 118, no. 12, 2015, doi: 10.1063/1.4932025.
  41. A. Chairunnisa, “Synthesis of LiFePO4 (Lithium Iron Phosphate) with Several Methods: A Review,” RHAZES: Green and Applied Chemistry, vol. 10, pp. 49–81, 2020, doi: 10.48419/IMIST.PRSM/rhazes-v10.23807.
  42. C. Hu, J. Li, X. Guo, X. Zheng, Z. Xun, and Z. Ding, “Research Progress of LiFePO4 Cathode for Lithium-ion Batteries,” Frontiers in Science and Engineering, vol. 2, no. 6, pp. 20–26, 2022, doi: 10.54691/fse.v2i6.967.
  43. J. Quan, S. Zhao, D. Song, T. Wang, W. He, and G. Li, “Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies,” Science of The Total Environment, vol. 819, p. 153105, 2022, doi: 10.1016/j.scitotenv.2022.153105.
  44. K. Zaghib, M. L. Trudeau, M. V Reddy, A. Mauger, C. Julien, and M. Armand, “John B. Goodenough’s Centenarian: Success Story of LiFePO4 (LFP) As Cathode Material for Rechargeable Lithium Batteries,” in Electrochemical Society Meeting Abstracts 241, 2022, no. 2, p. 356, doi: 10.1149/MA2022-012356mtgabs.
  45. Y. Lv, W. Luo, Y. Mo, and G. Zhang, “Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications,” RSC advances, vol. 12, no. 22, pp. 14127–14136, 2022, doi: 10.3390/en15249613.
  46. P. Szewczyk and A. Łebkowski, “Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle,” Energies, vol. 15, no. 24, p. 9613, 2022, doi: 10.3390/en15249613.
  47. R. Kumar and S. Chavan, “Numerical and Experimental Investigation of Thermal Behaviour for Fast Charging and Discharging of Various 18650 Lithium Batteries of Electric Vehicles.,” International Journal of Heat & Technology, vol. 40, no. 6, 2022, doi: 10.18280/ijht.400618.
  48. C. S. Johnson, “Grand challenges and opportunities in next-generation batteries and technologies,” Frontiers in Batteries and Electrochemistry, vol. 1, p. 1099081, 2022, doi: 10.3389/fbael.2022.1099081.
  49. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, “Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries,” Nano letters, vol. 11, no. 10, pp. 4462–4467, 2011, doi: 10.1021/nl2027684.
  50. H.-C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metal–organic frameworks,” Chemical reviews, vol. 112, no. 2. ACS Publications, pp. 673–674, 2012, doi: 10.1021/cr300014x.
  51. A. Gutiérrez-Serpa, I. Pacheco-Fernández, J. Pasán, and V. Pino, “Metal–organic frameworks as key materials for solid-phase microextraction devices—a review,” Separations, vol. 6, no. 4, p. 47, 2019, doi: 10.3390/separations6040047.
  52. D. Ponnamma, M. M. Chamakh, A. M. Alahzm, N. Salim, N. Hameed, and M. A. A. AlMaadeed, “Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators,” Polymers, vol. 12, no. 10, p. 2344, 2020, doi: 10.3390/polym12102344.
  53. W. Jiang, M. Wu, F. Liu, J. Yang, and T. Feng, “Variation of carbon coatings on the electrochemical performance of LiFePO 4 cathodes for lithium ionic batteries,” Rsc Advances, vol. 7, no. 70, pp. 44296–44302, 2017, doi: 10.1039/c7ra08062j.
  54. C.-Y. Huang, T.-R. Kuo, S. Yougbaré, and L.-Y. Lin, “Design of LiFePO4 and porous carbon composites with excellent High-Rate charging performance for Lithium-Ion secondary battery,” Journal of Colloid and Interface Science, vol. 607, pp. 1457–1465, 2022, doi: 10.1016/j.jcis.2021.09.118.
  55. S. Ye, E. Yasukawa, M. Song, A. Nomura, H. Kumakura, and Y. Kubo, “Solventless synthesis of core–shell LiFePO4/carbon composite for lithium-Ion battery cathodes by direct pyrolysis of coronene,” Industrial & Engineering Chemistry Research, vol. 57, no. 41, pp. 13753–13758, 2018, doi: 10.1021/acs.iecr.8b03277.
  56. S. Heng et al., “An organic-skinned secondary coating for carbon-coated LiFePO4 cathode of high electrochemical performances,” Electrochimica Acta, vol. 258, pp. 1244–1253, 2017, doi: 10.1016/j.electacta.2017.11.179.
  57. S. A. Sarbarze, M. Latifi, P. Sauriol, and J. Chaouki, “Gas‐phase carbon coating of LiFePO4 nanoparticles in fluidized bed reactor,” The Canadian Journal of Chemical Engineering, vol. 97, no. 8, pp. 2259–2272, 2019, doi: 10.1002/cjce.23496.
  58. W. M. Dose, C. Peebles, J. Blauwkamp, A. N. Jansen, C. Liao, and C. S. Johnson, “Synthesis of high-density olivine LiFePO4 from paleozoic siderite FeCO3 and its electrochemical performance in lithium batteries,” APL Materials, vol. 10, no. 4, 2022, doi: 10.1063/5.0084105.
  59. W. Li, J. Hwang, W. Chang, H. Setiadi, K. Y. Chung, and J. Kim, “Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance,” The Journal of Supercritical Fluids, vol. 116, pp. 164–171, 2016, doi: 10.1016/j.supflu.2016.05.007.
  60. J. Lian, X. Wang, W. Zhang, Y. Huang, T. Xia, and Y. Lian, “A ternary polyaniline/active carbon/lithium iron phosphate composite as cathode material for lithium ion battery,” Journal of Nanoscience and Nanotechnology, vol. 16, no. 6, pp. 6494–6497, 2016, doi: 10.1166/jnn.2016.12137.
  61. J. Lu et al., “Nano-scale hollow structure carbon-coated LiFePO 4 as cathode material for lithium ion battery,” Ionics, vol. 25, pp. 4075–4082, 2019, doi: 10.1007/s11581-019-02978-7.
  62. L. T. N. Huynh et al., “Carbon-coated LiFePO 4–carbon nanotube electrodes for high-rate Li-ion battery,” Journal of Solid State Electrochemistry, vol. 22, pp. 2247–2254, 2018, doi: 10.1007/s10008-018-3934-y.
  63. H. Raj and A. Sil, “PEDOT: PSS coating on pristine and carbon coated LiFePO 4 by one-step process: the study of electrochemical performance,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 13604–13616, 2019, doi: 10.1007/s10854-019-01730-1.
  64. R. Zhou, H. Guo, Y. Yang, Z. Wang, X. Li, and Y. Zhou, “N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries,” Journal of Alloys and Compounds, vol. 689, pp. 130–137, 2016, doi: 10.1016/j.jallcom.2016.07.315.
  65. Q. Zhao et al., “Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery,” Nano Energy, vol. 34, pp. 408–420, 2017, doi: 10.1016/j.nanoen.2017.03.006.
  66. S. Dutt, A. Kumar, and S. Singh, “Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications,” Clean Technologies, vol. 5, no. 1, pp. 140–166, 2023, doi: 10.3390/cleantechnol5010009.
  67. J. H. Lee, Y. Ahn, and S.-Y. Kwak, “Facile sonochemical synthesis of flexible Fe-based metal–organic frameworks and their efficient removal of organic contaminants from aqueous solutions,” ACS omega, vol. 7, no. 27, pp. 23213–23222, 2022, doi: 10.1021/acsomega.2c01068.
  68. B. Szczęśniak, S. Głowniak, J. Choma, and M. Jaroniec, “Mesoporous carbon-alumina composites, aluminas and carbons prepared via a facile ball milling-assisted strategy,” Microporous and Mesoporous Materials, vol. 346, p. 112325, 2022, doi: 10.1016/j.micromeso.2022.112325.
  69. J. Beamish-Cook, K. Shankland, C. A. Murray, and P. Vaqueiro, “Insights into the Mechanochemical Synthesis of MOF-74,” Crystal Growth & Design, vol. 21, no. 5, pp. 3047–3055, 2021, doi: 10.1021/acs.cgd.1c00213.
  70. R. Zhao, Z. Liang, R. Zou, and Q. Xu, “Metal-organic frameworks for batteries,” Joule, vol. 2, no. 11, pp. 2235–2259, 2018, doi: 10.1016/j.joule.2018.09.019.
  71. H. Rasheev, A. Seremak, R. Stoyanova, and A. Tadjer, “Redox Hyperactive MOF for Li+, Na+ and Mg2+ Storage,” Molecules, vol. 27, no. 3, p. 586, 2022, doi: 10.3390/molecules27030586.
  72. A. E. Baumann, D. A. Burns, B. Liu, and V. S. Thoi, “Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices,” Communications Chemistry, vol. 2, no. 1, p. 86, 2019, doi: 10.1038/s42004-019-0184-6.
  73. T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao, and R. Zou, “Metal–organic framework-based materials for energy conversion and storage,” ACS Energy Letters, vol. 5, no. 2, pp. 520–532, 2020, doi: 10.1021/acsenergylett.9b02625.
  74. J. Ren et al., “Recent progress on MOF‐derived carbon materials for energy storage,” Carbon Energy, vol. 2, no. 2, pp. 176–202, 2020, doi: 10.1002/cey2.44.

Most read articles by the same author(s)