Main Article Content


To minimize potential health hazards, there is awareness to avoid asbestos fibers in brake pads. Therefore, this study aims to produce composite brake pads using Elaeocarpus ganitrus seed powder as a substitute for asbestos. The composition of Elaeocarpus ganitrus seed powder was varied from 8%, 10%, and 12% by weight. The properties of the brake pads, including their morphology, physical characteristics, mechanical performance, and wear behavior, were thoroughly investigated and analyzed. The experimental results showed a positive correlation between the addition of 12% by weight of Elaeocarpus ganitrus and the increase in the density and hardness of the resulting sample. In addition, wear resistance increases with increasing percentage of Elaeocarpus ganitrus. Samples containing 12% by weight of Elaeocarpus ganitrus seed powder gave better properties compared to other composite samples. The research findings indicate that Elaeocarpus ganitrus particles can be an alternative to asbestos in the manufacture of brake pads.


Elaeocarpus ganitrus Mechanical Properties Morphological Properties Physical Properties Wear Properties

Article Details


  1. A. Belhocine and W. Z. Wan Omar, “Computational fluid dynamics modeling and computation of convective heat coefficient transfer for automotive disc brake rotors,” Computational Thermal Sciences: An International Journal, vol. 10, no. 1, pp. 1–21, 2018, doi: 10.1615/ComputThermalScien.2017019834.
  2. M. R. Ishak, A. Belhocine, J. M. Taib, and W. Z. W. Omar, “Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach,” Measurement, vol. 94, pp. 487–497, 2016, doi: 10.1016/j.measurement.2016.08.026.
  3. A. Belhocine and N. M. Ghazaly, “Effects of material properties on generation of brake squeal noise using finite element method,” Latin American Journal of Solids and Structures, vol. 12, pp. 1432–1447, 2015.
  4. J. Chandradass, M. A. Surabhi, P. B. Sethupathi, and P. Jawahar, “Development of low cost brake pad material using asbestos free sugarcane bagasse ash hybrid composites,” Materials Today: Proceedings, vol. 45, pp. 7050–7057, 2021, doi: 10.1016/j.matpr.2021.01.877.
  5. D. L. Singaravelu, R. Vijay, and P. Filip, “Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites,” Wear, vol. 426, pp. 1129–1141, 2019, doi: 10.1016/j.wear.2018.12.036.
  6. I. Hutchings and P. Shipway, Tribology: friction and wear of engineering materials. Butterworth-heinemann, 2017.
  7. R. S. Fono-Tamo and O. A. Koya, “Evaluation of mechanical characteristics of friction lining from agricultural waste,” International Journal of Advancements in Research & Technology, vol. 2, no. 11, pp. 1–5, 2013.
  8. U. D. Idris, V. S. Aigbodion, I. J. Abubakar, and C. I. Nwoye, “Eco-friendly asbestos free brake-pad: Using banana peels,” Journal of King Saud University-Engineering Sciences, vol. 27, no. 2, pp. 185–192, 2015, doi: 10.1016/j.jksues.2013.06.006.
  9. M. A. Maleque, A. Atiqah, R. J. Talib, and H. Zahurin, “New natural fibre reinforced aluminium composite for automotive brake pad,” International journal of mechanical and materials engineering, vol. 7, no. 2, pp. 166–170, 2012.
  10. D. Shinde and K. N. Mistry, “Asbestos base and asbestos free brake lining materials : comparative study,” International Journal of Scientific World, vol. 5, no. 1, p. 47, 2017, doi: 10.14419/ijsw.v5i1.7082.
  11. D. S. Yawas, S. Y. Aku, and S. G. Amaren, “Morphology and properties of periwinkle shell asbestos-free brake pad,” Journal of King Saud University-Engineering Sciences, vol. 28, no. 1, pp. 103–109, 2016, doi: 10.1016/j.jksues.2013.11.002.
  12. M. Yigrem, O. Fatoba, and S. Tensay, “Tensile strength, wear characteristics and numerical simulation of automotive brake pad from waste-based hybrid composite,” Materials Today: Proceedings, vol. 62, pp. 2954–2964, 2022, doi: 10.1016/j.matpr.2022.02.557.
  13. M. G. Jacko, P. H. S. Tsang, and S. K. Rhee, “Automotive friction materials evolution during the past decade,” Wear, vol. 100, no. 1–3, pp. 503–515, 1984, doi: 10.1016/0043-1648(84)90029-2.
  14. Y. Ma, G. S. Martynková, M. Valášková, V. Matějka, and Y. Lu, “Effects of ZrSiO4 in non-metallic brake friction materials on friction performance,” Tribology International, vol. 41, no. 3, pp. 166–174, 2008, doi: 10.1016/j.triboint.2007.07.004.
  15. I. K. A. Atmika, I. D. G. A. Subagia, I. W. Surata, and I. N. Sutantra, “Development of Environmentally Friendly Brake Lining Material,” in E3S Web of Conferences, 2019, vol. 120, p. 3005, doi: 10.1051/e3sconf/201912003005.
  16. A. K. Ilanko and S. Vijayaraghavan, “Wear behavior of asbestos-free eco-friendly composites for automobile brake materials,” Friction, vol. 4, pp. 144–152, 2016, doi: 10.1007/s40544-016-0111-0.
  17. D. L. Singaravelu, R. Vijay, and M. Rahul, “Influence of crab shell on tribological characterization of eco-friendly products based non asbestos brake friction materials,” SAE Technical Paper, 2015.
  18. S. J. Kim, K. S. Kim, and H. Jang, “Optimization of manufacturing parameters for a brake lining using Taguchi method,” Journal of Materials Processing Technology, vol. 136, no. 1–3, pp. 202–208, 2003, doi: 10.1016/S0924-0136(03)00159-6.
  19. R. B. Mathur, P. Thiyagarajan, and T. L. Dhami, “Controlling the hardness and tribological behaviour of non-asbestos brake lining materials for automobiles,” Carbon Letters (Carbon Lett.), vol. 5, no. 1, pp. 6–11, 2004.
  20. W. Asotah and A. Adeleke, “Development of asbestos free brake pads using corn husks,” Leonardo Electronic Journal of Practices and Technologies, vol. 31, pp. 129–144, 2017.
  21. J. Abutu, S. A. Lawal, M. B. Ndaliman, R. A. Lafia-Araga, O. Adedipe, and I. A. Choudhury, “Production and characterization of brake pad developed from coconut shell reinforcement material using central composite design,” SN Applied Sciences, vol. 1, no. 1, pp. 1–16, 2019, doi: 10.1007/s42452-018-0084-x.
  22. N. A. Ademoh and A. I. Olabisi, “Development and evaluation of maize husks (asbestos-free) based brake pad,” Development, vol. 5, no. 2, pp. 67–80, 2015.
  23. K. K. Ikpambese, D. T. Gundu, and L. T. Tuleun, “Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads,” Journal of King Saud University-Engineering Sciences, vol. 28, no. 1, pp. 110–118, 2016, doi: 10.1016/j.jksues.2014.02.001.
  24. J. Abutu, S. A. Lawal, M. B. Ndaliman, R. A. Lafia-Araga, O. Adedipe, and I. A. Choudhury, “Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis,” Engineering science and technology, an international journal, vol. 21, no. 4, pp. 787–797, 2018.
  25. X. Tang et al., “Study on the mechanism of expanded graphite to improve the fading resistance of the non-asbestos organic composite braking materials,” Tribology International, vol. 180, p. 108278, 2023, doi:
  26. K. Yu, X. Shang, X. Zhao, L. Fu, X. Zuo, and H. Yang, “High frictional stability of braking material reinforced by Basalt fibers,” Tribology International, vol. 178, p. 108048, 2023.
  27. J. Parameswaranpillai et al., “Tribological behavior of natural fiber-reinforced polymeric composites,” in Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites, Elsevier, 2023, pp. 153–171.
  28. A. K. Singh and D. V. Rai, “The Variation In Physical Properties Affects The Vertical Compressive Strength of The Rudraksha-Bead (Elaeocarpus Ganitrus Roxb),” International Journal of Mechanical Engineering and Technology, vol. 7, no. 3, 2016.
  29. R. Tavangar, H. A. Moghadam, A. Khavandi, and S. Banaeifar, “Comparison of dry sliding behavior and wear mechanism of low metallic and copper-free brake pads,” Tribology International, vol. 151, p. 106416, 2020.
  30. D. W. Lee, “Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus,” Nature, vol. 349, no. 6306, pp. 260–262, 1991, doi: 10.1038/349260a0.
  31. S. Hardainiyan, B. C. Nandy, and K. Kumar, “Elaeocarpus ganitrus (Rudraksha): A reservoir plant with their pharmacological effects,” Int J Pharm Sci Rev Res, vol. 34, no. 1, pp. 55–64, 2015.
  32. P. Lal, “Elaeocarpus sphaericus: A tree with curative powers: an overview,” Research Journal of Medicinal Plant, vol. 7, no. 1, pp. 23–31, 2013.
  33. A. Ghimire and P.-Y. Chen, “Seed protection strategies of the brainy Elaeocarpus ganitrus endocarp: Gradient motif yields fracture tolerance,” Acta Biomaterialia, vol. 138, pp. 430–442, 2022, doi: 10.1016/j.actbio.2021.10.050.
  34. D. Kolluri, A. K. Ghosh, and J. Bijwe, “Analysis of load-speed sensitivity of friction composites based on various synthetic graphites,” Wear, vol. 266, no. 1–2, pp. 266–274, 2009, doi: 10.1016/j.wear.2008.06.023.
  35. M. Kumar and J. Bijwe, “Optimized selection of metallic fillers for best combination of performance properties of friction materials: a comprehensive study,” Wear, vol. 303, no. 1–2, pp. 569–583, 2013, doi: 10.1016/j.wear.2013.03.053.
  36. S. K. Rhee, “Friction properties of a phenolic resin filled with iron and graphite—sensitivity to load, speed and temperature,” Wear, vol. 28, no. 2, pp. 277–281, 1974, doi: 10.1016/0043-1648(74)90169-0.
  37. P. Gopal, L. R. Dharani, and F. D. Blum, “Load, speed and temperature sensitivities of a carbon-fiber-reinforced phenolic friction material,” Wear, vol. 181, pp. 913–921, 1995, doi: 10.1016/0043-1648(95)90215-5.
  38. M. Kumar and J. Bijwe, “NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer,” Wear, vol. 269, no. 11–12, pp. 826–837, 2010, doi: 10.1016/j.wear.2010.08.011.
  39. N. Chinda, Y. Shishido, and T. Kuroda, “Friction material.” Google Patents, Jan. 08, 2009.
  40. M. Kumar, B. K. Satapathy, A. Patnaik, D. K. Kolluri, and B. S. Tomar, “Hybrid composite friction materials reinforced with combination of potassium titanate whiskers and aramid fibre: assessment of fade and recovery performance,” Tribology International, vol. 44, no. 4, pp. 359–367, 2011.
  41. I. Mutlu, C. Oner, and F. Findik, “Boric acid effect in phenolic composites on tribological properties in brake linings,” Materials & design, vol. 28, no. 2, pp. 480–487, 2007, doi: 10.1016/j.matdes.2005.09.002.
  42. J. Bijwe and M. Kumar, “Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance,” Wear, vol. 263, no. 7–12, pp. 1243–1248, 2007, doi: 10.1016/j.wear.2007.01.125.
  43. Y. Hui et al., “Fading behavior and wear mechanisms of C/C–SiC brake disc during cyclic braking,” Wear, vol. 526, p. 204930, 2023, doi: 10.1016/j.wear.2023.204930.
  44. X. Xu, S. Fan, L. Zhang, Y. Du, and L. Cheng, “Tribological behavior of three-dimensional needled carbon/silicon carbide and carbon/carbon brake pair,” Tribology International, vol. 77, pp. 7–14, 2014.
  45. T. R. Chapman, D. E. Niesz, R. T. Fox, and T. Fawcett, “Wear-resistant aluminum–boron–carbide cermets for automotive brake applications,” Wear, vol. 236, no. 1–2, pp. 81–87, 1999, doi: 10.1016/S0043-1648(99)00259-8.
  46. T. Agus, W. P. Ign, H. S. Alam, and S. Rochim, “Application of Oil Palm Empty Fruit Bunch Fiber to Improve the Physical and Mechanical Properties of Composite Railway Brake Block Materials,” Advanced Materials Research, vol. 651, pp. 486–491, 2013.
  47. H. Hong et al., “The thermo-mechanical behavior of brake discs for high-speed railway vehicles,” Journal of Mechanical Science and Technology, vol. 33, pp. 1711–1721, 2019, doi: 10.1007/s12206-019-0323-0.
  48. P. Grzes and M. Kuciej, “Coupled thermomechanical FE model of a railway disc brake for friction material wear calculations,” Wear, vol. 530, p. 205049, 2023, doi: 10.1016/j.wear.2023.205049.

Most read articles by the same author(s)