Main Article Content

Abstract

Tribological properties are crucial for air-conditioning system performance. The properties can be improved using nanolubricant. However, the effect of the binary ratio of hybrid nanolubricants on the tribological performance of automotive systems is limited in the literature. Therefore, the present study investigates the tribology performance of TiO2-SiO2 nanolubricants for application in automotive air-conditioning (AAC) systems. The dispersion of TiO2 and SiO2 into PVE lubricant was carried out using a two-step method. Subsequently, the dispersion stability was assessed qualitatively and quantitatively. The samples were characterised by a volume concentration of 0.010%, with variations in the mixture ratio of 20:80, 40:60, 50:50, 60:40, and 80:20. Coefficient of friction (COF) and wear scar diameter (WSD) values were determined using the Koehler Four-ball Tribo Tester and Light Compound Microscopy. The investigation revealed that each sample experienced a reduction in COF, with the 40:60 ratio demonstrating the best ratio with the most significant decrease of 37.09%. At the same time, the COF decreased by 8.34%, 2.12%, 7.37%, and 15.11% for the nanolubricant samples at 20:80, 50:50, 60:40, and 80:20, respectively. The WSD evaluation showed that the 40:60 ratio has the lowest scar diameter of 0.0344 mm and a 37.09% wear rate decrease compared to pure lubricant. Each sample exhibits superior performance when evaluated for tribological characteristics and performance, particularly in the case of nanolubricants with the 40:60 ratio. The TiO2-SiO2/PVE, characterised by a volume concentration of 0.010%, has remarkable efficacy across different binary ratios, making it highly recommended with a 40:60 ratio for lubricating AAC compressor systems.

Keywords

Nanolubricant Air-conditioning System Tribology Coefficient of Friction Wear Scar Diameter

Article Details

References

  1. R. S. Revuru, V. K. Pasam, I. Syed, and U. K. Paliwal, “Development of finite element based model for performance evaluation of nano cutting fluids in minimum quantity lubrication,” CIRP Journal of Manufacturing Science and Technology, vol. 21, pp. 75–85, 2018, doi: 10.1016/j.cirpj.2018.02.005.
  2. N. N. M. Zawawi, W. H. Azmi, and M. F. Ghazali, “Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system,” Applied Thermal Engineering, vol. 204, p. 117998, 2022, doi: 10.1016/j.applthermaleng.2021.117998.
  3. D. F. M. Pico, L. R. R. da Silva, O. S. H. Mendoza, and E. P. Bandarra Filho, “Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32,” International Journal of Heat and Mass Transfer, vol. 152, p. 119493, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119493.
  4. M. Z. Sharif, W. H. Azmi, A. A. M. Redhwan, R. Mamat, and G. Najafi, “Energy saving in automotive air conditioning system performance using SiO 2/PAG nanolubricants,” Journal of Thermal Analysis and Calorimetry, vol. 135, pp. 1285–1297, 2019, doi: 10.1007/s10973-018-7728-3.
  5. W. H. Azmi, M. Z. Sharif, T. M. Yusof, R. Mamat, and A. A. M. Redhwan, “Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review,” Renewable and Sustainable Energy Reviews, vol. 69, pp. 415–428, 2017, doi: 10.1016/j.rser.2016.11.207.
  6. D. F. M. Pico, L. R. R. da Silva, P. S. Schneider, and E. P. Bandarra Filho, “Performance evaluation of diamond nanolubricants applied to a refrigeration system,” International Journal of Refrigeration, vol. 100, pp. 104–112, 2019, doi: 10.1016/j.ijrefrig.2018.12.009.
  7. A. H. Hamisa, W. H. Azmi, M. F. Ismail, R. A. Rahim, and H. M. Ali, “Tribology performance of polyol-ester based TiO2, SiO2, and their hybrid nanolubricants,” Lubricants, vol. 11, no. 1, p. 18, 2023, doi: 10.3390/lubricants11010018.
  8. M. I. Ahmed and J. U. Ahamed, “TiO2 nanolubricant: An approach for performance improvement in a domestic air conditioner,” Results in Materials, vol. 13, p. 100255, 2022, doi: 10.1016/j.rinma.2022.100255.
  9. A. C. Yilmaz, “Performance evaluation of a refrigeration system using nanolubricant,” Applied Nanoscience, vol. 10, pp. 1667–1678, 2020, doi: 10.1007/s13204-020-01258-5.
  10. M. K. Abdolbaqi et al., “Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids,” International Communications in Heat and Mass Transfer, vol. 77, pp. 54–63, 2016, doi: 10.1016/j.icheatmasstransfer.2016.07.001.
  11. M. K. Abdolbaqi, R. Mamat, N. A. C. Sidik, W. H. Azmi, and P. Selvakumar, “Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat tubes,” International Journal of Heat and Mass Transfer, vol. 108, pp. 1026–1035, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.12.024.
  12. I. Zakaria, W. Mohamed, W. H. Azmi, A. M. I. Mamat, R. Mamat, and W. R. W. Daud, “Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids,” International Journal of Heat and Mass Transfer, vol. 119, pp. 460–471, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.137.
  13. S. S. Sanukrishna and M. J. Prakash, “Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system,” International Journal of Refrigeration, vol. 86, pp. 356–372, 2018, doi: 10.1016/j.ijrefrig.2017.11.014.
  14. W. H. Azmi, K. V Sharma, P. K. Sarma, R. Mamat, S. Anuar, and L. S. Sundar, “Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts,” Applied Thermal Engineering, vol. 73, no. 1, pp. 296–306, 2014, doi: 10.1016/j.applthermaleng.2014.07.060.
  15. M. F. Ismail, W. H. Azmi, R. Mamat, and H. M. Ali, “Thermal and tribological properties enhancement of PVE lubricant modified with SiO2 and TiO2 nanoparticles additive,” Nanomaterials, vol. 13, no. 1, p. 42, 2022, doi: 10.3390/nano13010042.
  16. S. S. Sanukrishna, S. Vishnu, T. S. Krishnakumar, and M. J. Prakash, “Effect of oxide nanoparticles on the thermal, rheological and tribological behaviours of refrigerant compressor oil: An experimental investigation,” International Journal of Refrigeration, vol. 90, pp. 32–45, 2018, doi: 10.1016/j.ijrefrig.2018.04.006.
  17. N. N. M. Zawawi, W. H. Azmi, and M. F. Ghazali, “Tribological performance of Al2O3–SiO2/PAG composite nanolubricants for application in air-conditioning compressor,” Wear, vol. 492, p. 204238, 2022, doi: 10.1016/j.wear.2022.204238.
  18. M. F. Ismail, W. H. Azmi, R. Mamat, and A. H. Hamisa, “Experimental Investigation on Newtonian Behaviour and Viscosity of TiO2/PVE Nanolubricants for Application in Refrigeration System,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 92, no. 1, pp. 9–17, 2022, doi: 10.37934/arfmts.92.1.917.
  19. C. L. Idemitsu Kosan, “Characteristics of Daphne hermetic oil.” 2020.
  20. M. F. Ismail, W. H. Azmi, and R. Mamat, “Comparison of Preparation Methods Effect on the Stability of Compressor oil-based Nanolubricant,” Journal of Advanced Research in Applied Mechanics, vol. 91, no. 1, pp. 1–6, 2022, doi: 10.37934/aram.91.1.16.
  21. N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, and M. Z. Sharif, “Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate,” in IOP Conference Series: Materials Science and Engineering, 2017, vol. 257, no. 1, p. 12065, doi: 10.1088/1757-899X/257/1/012065.
  22. W. H. Azmi, K. V Sharma, P. K. Sarma, R. Mamat, S. Anuar, and V. D. Rao, “Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid,” Experimental Thermal and Fluid Science, vol. 51, pp. 103–111, 2013, doi: 10.1016/j.expthermflusci.2013.07.006.
  23. N. N. M. Zawawi, W. H. Azmi, A. A. M. Redhwan, M. Z. Sharif, and M. Samykano, “Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants,” International Journal of Refrigeration, vol. 89, pp. 11–21, 2018, doi: 10.1016/j.ijrefrig.2018.01.015.
  24. A. I. Ramadhan, W. H. Azmi, R. Mamat, K. A. Hamid, and S. Norsakinah, “Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 469, p. 12068, doi: 10.1088/1757-899X/469/1/012068.
  25. N. N. M. Zawawi, W. H. Azmi, M. Z. Sharif, and G. Najafi, “Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios,” Journal of Thermal Analysis and Calorimetry, vol. 135, no. 2, pp. 1243–1255, 2019, doi: 10.1007/s10973-018-7670-4.
  26. N. F. Azman and S. Samion, “Dispersion stability and lubrication mechanism of nanolubricants: a review,” International journal of precision engineering and manufacturing-green technology, vol. 6, pp. 393–414, 2019, doi: 10.1007/s40684-019-00080-x.
  27. J. Zhao, Y. Huang, Y. He, and Y. Shi, “Nanolubricant additives: A review,” Friction, vol. 9, pp. 891–917, 2021, doi: 10.1007/s40544-020-0450-8.
  28. W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” Journal of nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/435873.
  29. S. Chakraborty and P. K. Panigrahi, “Stability of nanofluid: A review,” Applied Thermal Engineering, vol. 174, p. 115259, 2020, doi: 10.1016/j.applthermaleng.2020.115259.
  30. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” International journal of heat and mass transfer, vol. 54, no. 17–18, pp. 4051–4068, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.04.014.
  31. J.-H. Lee et al., “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” International Journal of Heat and Mass Transfer, vol. 51, no. 11–12, pp. 2651–2656, 2008, doi: 10.1016/j.ijheatmasstransfer.2007.10.026.
  32. N. Sezer, M. A. Atieh, and M. Koç, “A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids,” Powder technology, vol. 344, pp. 404–431, 2019, doi: 10.1016/j.powtec.2018.12.016.
  33. Y. Singh, N. K. Singh, A. Sharma, A. Singla, D. Singh, and E. Abd Rahim, “Effect of ZnO nanoparticles concentration as additives to the epoxidized Euphorbia Lathyris oil and their tribological characterization,” Fuel, vol. 285, p. 119148, 2021, doi: 10.1016/j.fuel.2020.119148.
  34. P. Zulhanafi, S. Syahrullail, and Z. N. Faizin, “Tribological performance of trimethylolpropane ester bio-lubricant enhanced by graphene oxide nanoparticles and oleic acid as a surfactant,” Tribology International, vol. 183, p. 108398, 2023, doi: 10.1016/j.triboint.2023.108398.
  35. M. F. Ismail and W. A. Wan Hamzah, “Tribological Performance Effect of SiO2 and TiO2 Nanoparticles as Lubricating Oil Additives,” in Proceedings of the 2nd Energy Security and Chemical Engineering Congress: Selected Articles from ESChE 2021, Malaysia, 2022, pp. 223–231, doi: 10.1007/978-981-19-4425-3_20.
  36. Y. J. J. Jason, H. G. How, Y. H. Teoh, and H. G. Chuah, “A study on the tribological performance of nanolubricants,” Processes, vol. 8, no. 11, p. 1372, 2020, doi: 10.3390/pr8111372.