Main Article Content

Abstract

In this paper, an investigation of the use of gasoline-ethanol-methanol on the spark ignition engine is presented, it is not common practice on public roads to use three fuels simultaneously in a spark-ignition engine. Using methanol reduces the ignition delay during combustion, especially at lean air-fuel ratios, and reduces knocking potential in small amounts. The best result ignition delay with value λ= 1,3 obtained in the E5M15 mixture with SoC occurred at 325 CAo, while the value λ= 1,0 also obtained on the same mixture with SoC occurred at 321,5 CAo. The CCV results indicate a more sloping increase in the COV (coefficient of variation) value when using GEM fuel, particularly with the addition of more methanol. The addition of methanol enhances combustion progression and improves the ability of the fuel blend to sustain combustion under lean conditions. Regarding the torque and power values, at λ= 1,0; 1,1; 1,2 are not significantly different, while the value λ= 1,3 is below the other λ values.

Keywords

Gasoline Ethanol Methanol Spark ignition engine SoC AFR COV Performance

Article Details

References

  1. Government of the Republic of Indonesia. Peraturan Presiden (Perpres) Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional. Indonesia. 2017.
  2. M. K. Balki. C. Sayin. and M. Canakci. “The effect of different alcohol fuels on the performance. emission and combustion characteristics of a gasoline engine.” Fuel. vol. 115. 2014. doi: 10.1016/j.fuel.2012.09.020.
  3. M. Setiyo. “Alternative fuels for transportation sector in Indonesia.” Mechanical Engineering for Society and Industry. vol. 2. no. 1. pp. 1–6. 2022. doi: 10.31603/mesi.6850.
  4. B. Waluyo and B. C. Purnomo. “Exhaust Gas Emissions of Homogeneous Gasoline-Methanol-(Ethanol) Blends.” Automotive Experiences. vol. 5. no. 2. pp. 173–181. 2022. doi: 10.31603/ae.6599.
  5. A. L. Demain. “Biosolutions to the energy problem.” Journal of industrial microbiology and biotechnology. vol. 36. no. 3. pp. 319–332. 2009. doi: 10.1007/s10295-008-0521-8.
  6. Y. Li. B. Lou. S. Abubakar. and G. Wu. “Skeletal mechanism for i-propanol-n-butanol-ethanol (IBE) and n-butanol combustion in diesel engine.” Fuel. vol. 302. p. 121136. 2021. doi: 10.1016/j.fuel.2021.121136.
  7. H. Y. Nanlohy. H. Riupassa. and M. Yamaguchi. “Performance and Emissions Analysis of BE85-Gasoline Blends on Spark Ignition Engine.” Automotive Experiences. vol. 5. no. 1. pp. 40–48. 2022. doi: 10.31603/ae.6116.
  8. S. Syarifudin. F. L. Sanjaya. F. Fatkhurrozak. M. K. Usman. Y. Sibagariang. and H. Köten. “Effect Methanol. Ethanol. Butanol on the Emissions Characteristics of Gasoline Engine.” Automotive Experiences. vol. 4. no. 2. pp. 62–67. 2020. doi: 10.31603/ae.4641.
  9. M. Hanifuddin. M. F. Taufiqurrahman. T. A. Setyawan. R. Anggarani. C. S. Wibowo. and B. Sugiarto. “Performance of a Single-Cylinder Four-Stroke Engine with High Concentrations of Gasoline-Ethanol-Methanol (GEM).” Automotive Experiences. vol. 6. no. 2. pp. 407–415. Aug. 2023. doi: 10.31603/ae.9332.
  10. M. Setiyo. Saifudin. A. W. Jamin. R. Nugroho. and D. W. Karmiadji. “The Effect of Ethanol on Fuel Tank Corrosion Rate.” Jurnal Teknologi. vol. 80. no. 6. pp. 19–25. 2018. doi: 10.11113/jt.v80.12324.
  11. M. Setiyo. A. W. Jamin. R. Nugroho. and M. R. I. “Corrosion Resistance test using Gravimetric method on fuel tanks of ethanol fuel vehicles.” Jurnal Teknik Mesin Institut Teknologi Padang. vol. 7. no. 2. pp. 64–67. 2017. doi: 10.21063/jtm.2017.v7.i2.63-67.
  12. B. Waluyo. M. Setiyo. Saifudin. and I. N. G. Wardana. “The role of ethanol as a cosolvent for isooctane-methanol blend.” Fuel. vol. 262. p. 116465. 2020. doi: 10.1016/j.fuel.2019.116465.
  13. S. Abikusna. B. Sugiarto. and I. Yamin. “Utilization analysis of bioethanol (low grade) and oxygenated additive to cov and gas emissions on si engine.” 2020.
  14. A. Setia. S. Bambang. M. Ratna. and Y. Iqbal. “The effect of additive on combustion characteristics and cycle to cycle variations on SI engine fueled by gasoline and bioethanol.” Eastern-European Journal of Enterprise Technologies. vol. 6. no. 6. pp. 27–36. 2018. doi: 10.15587/1729-4061.2018.147585.
  15. F. Adian and B. Sugiarto. “The optimization of the relationship between octane number of gasoline-ethanol blend fuels in various settings of the engine control module.” 2020.
  16. Y. L. Calvin et al.. “Volatility characteristics and oxygenate content of gasoline-ethanol fuel blends on varying 88. 90. 92 ron gasoline with different ethanol percentage.” 2021.
  17. A. S. Auzani. C. S. Wibowo. R. Anggarani. Y. S. Nugroho. and B. Sugiarto. “Kinetic Modeling Study of Laminar Burning Velocity of Gasoline–Ethanol–Methanol Blends at Elevated Temperature and Pressure.” Makara Journal of Technology. vol. 25. no. 2. p. 6. 2021. doi: 10.7454/mst.v25i2.4070.
  18. Y. L. Calvin et al.. “Volatility and physicochemical properties of gasoline-ethanol blends with gasoline RON-based 88. 90. and 92.” Fuel. vol. 307. no. April 2021. p. 121850. 2022. doi: 10.1016/j.fuel.2021.121850.
  19. D. Li et al.. “Study on combustion and emissions of a hydrous ethanol/gasoline dual fuel engine with combined injection.” Fuel. vol. 309. p. 122004. 2022. doi: 10.1016/j.fuel.2021.122004.
  20. C. Wouters. P. Burkardt. F. Steeger. M. Fleischmann. and S. Pischinger. “Comprehensive assessment of methanol as an alternative fuel for spark-ignition engines.” Fuel. vol. 340. p. 127627. 2023. doi: 10.1016/j.fuel.2023.127627.
  21. M. Amine and Y. Barakat. “Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends.” Egyptian Journal of Petroleum. vol. 28. no. 4. pp. 371–376. 2019. doi: 10.1016/j.ejpe.2019.08.006.
  22. X. Wang. F. Zhou. J. Fu. and J. Liu. “Effect of ethanol on auto-ignition characteristics and laminar burning velocity of gasoline under elevated temperature and pressure.” Fuel Processing Technology. vol. 242. p. 107644. 2023. doi: 10.1016/j.fuproc.2022.107644.
  23. H. Y. Nanlohy et al.. “The use of bioethanol-isooctane blend and the effect of its molecular properties on SI engine performance and exhaust emissions.” SSRN Electron. J. 2022. doi: 10.2139/ssrn.4097552.
  24. D. Li. X. Yu. Z. Guo. J. Zhang. T. Wang. and Y. Li. “Effects of isopropanol ratio at different excess air ratios on combustion and emissions characteristics of an isopropanol/gasoline dual-fuel combined injection SI engine.” Fuel. vol. 333. p. 126507. 2023. doi: 10.1016/j.fuel.2022.126507.
  25. Z. Chen. L. Wang. and K. Zeng. “Comparative study of combustion process and cycle-by-cycle variations of spark-ignition engine fueled with pure methanol. ethanol. and n-butanol at various air–fuel ratios.” Fuel. vol. 254. p. 115683. 2019. doi: 10.1016/j.fuel.2019.115683.
  26. Y. Jiang. Y. Chen. and M. Xie. “Effects of blending dissociated methanol gas with the fuel in gasoline engine.” Energy. vol. 247. p. 123494. 2022. doi: 10.1016/j.energy.2022.123494.
  27. B. Waluyo. M. Setiyo. Saifudin. and I. N. G. Wardana. “Fuel performance for stable homogeneous gasoline-methanol-ethanol blends.” Fuel. vol. 294. p. 120565. 2021. doi: 10.1016/j.fuel.2021.120565.
  28. S. Yunoki and M. Saito. “A simple method to determine bioethanol content in gasoline using two-step extraction and liquid scintillation counting.” Bioresource technology. vol. 100. no. 23. pp. 6125–6128. 2009. doi: 10.1016/j.biortech.2009.06.027.
  29. S. Abikusna. B. Sugiarto. and I. Yamin. “Heat Release and Emission Analysis as an Indicator of Decreasing Cyclic Variation in Spark Ignition Engine Fueled by Gasoline Ethanol with Oxygenated Additive.” International Journal of Sciences: Basic and Applied Research (IJSBAR). vol. 51. no. 1. pp. 55–67. 2020.
  30. S. Di Iorio. F. Catapano. A. Magno. P. Sementa. and B. M. Vaglieco. “The potential of ethanol/methanol blends as renewable fuels for DI SI engines.” Energies. vol. 16. no. 6. p. 2791. 2023. doi: 10.3390/en16062791.
  31. M. Usman et al.. “Comparative assessment of ethanol and methanol–ethanol blends with gasoline in SI engine for sustainable development.” Sustainability. vol. 15. no. 9. p. 7601. 2023. doi: 10.3390/su15097601.
  32. B. Sugiarto. M. F. Dwinanda. D. Auliady. R. N. Andito. and C. Simanjuntak. “Investigation of Cyclohexanol as an Oxygenated Additive for Gasoline--Bioethanol Mixtures and Its Effect on the Combustion and Emission Characteristics of Spark Ignition Engines..” International Journal of Technology. vol. 12. no. 5. 2021. doi: 10.14716/ijtech.v12i5.5204.
  33. Ö. L. Gülder. “Laminar burning velocities of methanol. ethanol and isooctane-air mixtures.” in Symposium (international) on combustion. 1982. vol. 19. no. 1. pp. 275–281. doi: 10.1016/S0082-0784(82)80198-7.
  34. J. Wei. H. Feng. H. Liu. H. Zhu. Z. Yue. and M. Yao. “Analysis of knocking combustion with methanol/iso-octane and ethanol/iso-octane blends in a spark-ignition engine.” Fuel. vol. 284. p. 118979. 2021. doi: 10.1016/j.fuel.2020.118979.
  35. L. Chen. R. Zhang. H. Wei. and J. Pan. “Effect of flame speed on knocking characteristics for SI engine under critical knocking conditions.” Fuel. vol. 282. p. 118846. 2020. doi: 10.1016/j.fuel.2020.118846.
  36. M. Aghahasani. A. Gharehghani. A. M. Andwari. M. Mikulski. and J. Könnö. “Effect of natural gas direct injection (NGDI) on the performance and knock behavior of an SI engine.” Energy Conversion and Management. vol. 269. p. 116145. 2022. doi: 10.1016/j.enconman.2022.116145.
  37. J. B. Heywood. Internal Combustion Engine Fundamentals. 2nd ed. McGraw: McGraw-Hill Education. 2018.
  38. G. C. Malima and F. Moyo. “Are electric vehicles economically viable in sub-Saharan Africa? The total cost of ownership of internal combustion engine and electric vehicles in Tanzania.” Transport Policy. vol. 141. pp. 14–26. 2023. doi: 10.1016/j.tranpol.2023.07.014.
  39. Z. Wang et al.. “Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames.” Combustion and Flame. vol. 229. p. 111392. 2021. doi: 10.1016/j.combustflame.2021.02.038.
  40. M. Kamil and I. T. Nazzal. “Performance evaluation of spark ignited engine fueled with gasoline-ethanol-methanol blends.” Journal of Energy and Power Engineering. vol. 10. no. 6. pp. 343–351. 2016. doi: 10.17265/1934-8975/2016.06.002.
  41. K. Chinnadurai and N. Kasianantham. “Impact on combustion stability. fuel economy and emission compliance with butanol enleanment strategy in gasoline engine–A drop-in fuel approach.” Fuel Processing Technology. vol. 246. p. 107756. 2023. doi: 10.1016/j.fuproc.2023.107756.
  42. J. Beeckmann. L. Cai. and H. Pitsch. “Experimental investigation of the laminar burning velocities of methanol. ethanol. n-propanol. and n-butanol at high pressure.” Fuel. vol. 117. pp. 340–350. 2014. doi: 10.1016/j.fuel.2013.09.025.

Most read articles by the same author(s)