Main Article Content

Abstract

The main objective of this study is to develop spark ignition engine parameters that allow complete combustion while reducing dependence on fossil fuels. To achieve this goal, optimization of compression ratio, gasoline-ethanol mixture, ignition timing, and spark plug type was used. In addition, this study used water injection that continuously injects water before the intake manifold. In this study, the Taguchi method with the L9 orthogonal array was applied. According to the experimental verification results, the best combination to reduce exhaust emission levels is to utilize gasoline-ethanol (E70), a compression ratio (CR) of 15.6:1, an ignition degree of +4°, and a platinum spark plug. Meanwhile, the presence of water injection at 1.45 ml/s helps reduce vehicle exhaust pollutants.

Keywords

Engine emissions Gasoline-ethanol blended Ignition timing Engine parameter Water injection

Article Details

References

  1. M. H. Aditya, Y. Yuniaristanto, and W. Sutopo, “Exploring the Factors Accelerating the Electric Motorcycle Adoptions: Insights from Theory of Planned Behavior and Travel Behavior,” Automotive Experiences, vol. 7, no. 1, pp. 171–188, May 2024, doi: 10.31603/ae.11044.
  2. Y. D. Herlambang, W. Sulistiyo, M. Margana, N. Apriandi, S. T. Nursaputro, M. Marliyati, M. Setiyo, W. Purwanto, M. L. Rochman, and J. C. Shyu., “Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance,” Automotive Experiences, vol. 7, no. 1, pp. 18–27, 2024, doi: 10.31603/ae.10506.
  3. A. M. Zope, R. K. Swami, and A. Patil, “SEM Approach for Analysis of Lean Six Sigma Barriers to Electric Vehicle Assembly,” Automotive Experiences, vol. 6, no. 2, pp. 416–428, 2023, doi: 10.31603/ae.9690.
  4. I. C. Setiawan and M. Setiyo, “Fueling the Future: The Case for Heavy-Duty Fuel Cell Electric Vehicles in Sustainable Transportation,” Automotive Experiences, vol. 7, no. 1, pp. 1–5, 2024, doi: 10.31603/ae.11285.
  5. A. Setiyawan, M. H. Fathan, A. Bahatmaka, D. F. Fitriana, K. Kriswanto, and R. F. Naryanto, “Characterization of bioethanol from fermented oryza sativa glutinosa as an alternative renewable fuel and blended with gasoline fuel,” BIS Energy and Engineering, vol. 1, pp. V124034–V124034, 2024, doi: 10.31603/biseeng.71.
  6. T. Rokhman, P. Paridawati, R. H. Rahmanto, A. Surahto, and D. A. Prasetyo, “Performance optimization of pertalite fuel gasoline engine with the addition of turpentine oil and ethanol,” BIS Energy and Engineering, vol. 1, pp. V124020–V124020, 2024, doi: 10.31603/biseeng.60.
  7. M. Setiyo, “Alternative fuels for transportation sector in Indonesia,” Mechanical Engineering for Society and Industry, vol. 2, no. 1, pp. 1–6, 2022, doi: 10.31603/mesi.6850.
  8. I. G. Wiratmaja and E. Elisa, “Kajian Peluang Pemanfaatan Bioetanol Sebagai Bahan Bakar Utama Kendaraan Masa Depan Di Indonesia,” Jurnal Pendidikan Teknik Mesin Undiksha, vol. 8, no. 1, pp. 1–8, Jul. 2020, doi: 10.23887/JPTM.V8I1.27298.
  9. I. Veza, D. W. Djamari, N. Hamzah, N. Tamaludin, M. Mairizal, H. Handi, Y. Yusrizal, and R. Usman., “Lessons from Brazil: Opportunities of Bioethanol Biofuel in Indonesia,” Indonesian Journal of Computing, Engineering, and Design (IJoCED), vol. 4, no. 1, pp. 8–16, Apr. 2022, doi: 10.35806/IJOCED.V4I1.239.
  10. X. Wang, J. Gao, Z. Chen, H. Chen, Y. Zhao, Y. Huang, and Z. Chen., “Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review,” Renewable Energy, vol. 194, pp. 504–525, Jul. 2022, doi: 10.1016/J.RENENE.2022.05.132.
  11. M. Hanifuddin, M. F. Taufiqurrahman, T. A. Setyawan, R. Anggarani, C. S. Wibowo, and B. Sugiarto, “Performance of a Single-Cylinder Four-Stroke Engine with High Concentrations of Gasoline-Ethanol-Methanol (GEM),” Automotive Experiences, vol. 6, no. 2, pp. 407–415, Aug. 2023, doi: 10.31603/ae.9332.
  12. T. Badawy, M. S. Panithasan, J. W. G. Turner, J. Kim, D. Han, J. Lee, A. S. Alramadhan, and J. Chang., “Performance and emissions evaluation of a multi-cylinder research engine fueled with ethanol, methanol, gasoline Euro-6, E85, and iso-stoichiometric ternary GEM mixtures operated at lean conditions,” Fuel, vol. 363, p. 130962, May 2024, doi: 10.1016/J.FUEL.2024.130962.
  13. M. K. Mohammed, H. H. Balla, Z. M. H. Al-Dulaimi, Z. S. Kareem, and M. S. Al-Zuhairy, “Effect of ethanol-gasoline blends on SI engine performance and emissions,” Case Studies in Thermal Engineering, vol. 25, no. May 2020, p. 100891, 2021, doi: 10.1016/j.csite.2021.100891.
  14. M. Mokhtar, B. Sugiarto, A. A. Agama, A. Kurniawan, and A. S. Auzani, “Investigating Knocking Potential, Cycle Stability, and Emission Characteristics in Lean Spark Ignition Engine with Gasoline, Ethanol, and Methanol,” Automotive Experiences, vol. 7, no. 1, pp. 48–62, Apr. 2024, doi: 10.31603/ae.10607.
  15. P. Sakthivel, K. A. Subramanian, and R. Mathai, “Effects of different compression ratios and spark timings on performance and emissions of a two-wheeler with 30% ethanol-gasoline blend (E30),” Fuel, vol. 277, p. 118113, Oct. 2020, doi: 10.1016/J.FUEL.2020.118113.
  16. P. Aakko-Saksa, “Comprehensive emission characterisation of exhaust from alternative fuelled cars,” Atmospheric Environment, vol. 236, 2020, doi: 10.1016/j.atmosenv.2020.117643.
  17. L. V. Amaral, N. D. S. A. Santos, V. R. Roso, R. de C. de O. Sebastião, and F. J. P. Pujatti, “Effects of gasoline composition on engine performance, exhaust gases and operational costs,” Renewable and Sustainable Energy Reviews, vol. 135, p. 110196, Jan. 2021, doi: 10.1016/J.RSER.2020.110196.
  18. C. Wang, S. Zeraati-Rezaei, L. Xiang, and H. Xu, “Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain,” Applied Energy, vol. 191, pp. 603–619, Apr. 2017, doi: 10.1016/J.APENERGY.2017.01.081.
  19. A. O. Hasan, H. Al-Rawashdeh, A. H. Al-Muhtaseb, A. Abu-jrai, R. Ahmad, and J. Zeaiter, “Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends,” Fuel, vol. 231, pp. 197–203, Nov. 2018, doi: 10.1016/J.FUEL.2018.05.045.
  20. M. Q. M. Tamam, N. R. Abdullah, W. J. Yahya, H. A. Kadir, Y. Putrasari, and M. A. Ahmad, “Effects of Ethanol Blending with Methanol-Gasoline fuel on Spark Ignition Engine Performance and Emissions,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 83, no. 2, pp. 54–72, Jun. 2021, doi: 10.37934/ARFMTS.83.2.5472.
  21. F. B. Ismail, A. Al-Bazi, and I. G. Aboubakr, “Numerical investigations on the performance and emissions of a turbocharged engine using an ethanol-gasoline blend,” Case Studies in Thermal Engineering, vol. 39, p. 102366, Nov. 2022, doi: 10.1016/J.CSITE.2022.102366.
  22. A. Calam, “The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine,” Fuel, vol. 266, 2020, doi: 10.1016/j.fuel.2020.117071.
  23. S. H. Li, Z. Wen, J. Hua, S. Xi, P. Fang, X. Gao, Y. Li, Z. Wang, and S. Li., “Effects of Ethanol and Methanol on the Combustion Characteristics of Gasoline with the Revised Variation Disturbance Method,” ACS Omega, vol. 7, no. 21, pp. 17797–17810, May 2022, doi: 10.1021/ACSOMEGA.2C00991/SUPPL_FILE/AO2C00991_SI_001.PDF.
  24. R. L. Sari, D. Golke, H. J. Enzweiler, N. P. G. Salau, F. M. Pereira, and M. E. S. Martins, “Exploring optimal operating conditions for wet ethanol use in spark ignition engines,” Applied Thermal Engineering, vol. 138, pp. 523–533, Jun. 2018, doi: 10.1016/J.APPLTHERMALENG.2018.04.078.
  25. Y. Li, S. Lin, L. Huang, and J. Liu, “A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine,” Energy, vol. 286, p. 129683, Jan. 2024, doi: 10.1016/J.ENERGY.2023.129683.
  26. N. Sharma, “Effect of fuel injection pressure and engine speed on performance, emissions, combustion, and particulate investigations of gasohols fuelled gasoline direct injection engine,” Journal of Energy Resources Technology, Transactions of the ASME, vol. 142, no. 4, 2020, doi: 10.1115/1.4044763.
  27. S. K. Thangavelu, A. S. Ahmed, and F. N. Ani, “Review on bioethanol as alternative fuel for spark ignition engines,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 820–835, Apr. 2016, doi: 10.1016/j.rser.2015.11.089.
  28. R. C. Costa and J. R. Sodré, “Compression ratio effects on an ethanol/gasoline fuelled engine performance,” Applied Thermal Engineering, vol. 31, no. 2–3, pp. 278–283, Feb. 2011, doi: 10.1016/J.APPLTHERMALENG.2010.09.007.
  29. R. B. R. da Costa, “Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis,” Applied Energy, vol. 261, 2020, doi: 10.1016/j.apenergy.2019.114438.
  30. B. Waluyo, M. Setiyo, Saifudin, and I. N. G. Wardana, “The role of ethanol as a cosolvent for isooctane-methanol blend,” Fuel, vol. 262, p. 116465, 2020, doi: 10.1016/j.fuel.2019.116465.
  31. B. Waluyo, M. Setiyo, Saifudin, and I. N. G. Wardana, “Fuel performance for stable homogeneous gasoline-methanol-ethanol blends,” Fuel, vol. 294, p. 120565, 2021, doi: 10.1016/j.fuel.2021.120565.
  32. V. N. Duy, K. N. Duc, D. N. Cong, H. N. Xa, and T. Le Anh, “Experimental study on improving performance and emission characteristics of used motorcycle fueled with ethanol by exhaust gas heating transfer system,” Energy for Sustainable Development, vol. 51, pp. 56–62, 2019, doi: 10.1016/j.esd.2019.05.006.
  33. W. Purwanto, T. K. Liu, H. Maksum, A. Arif, and M. Nasir., “The Fuel System Modification To Strengthen Achievement And The Prospect Of Utilizing Gasoline Ethanol Blended With Water Injection,” Journal of Applied Engineering and Technological Science (JAETS), vol. 5, no. 2, pp. 802–812, Jun. 2024, doi: 10.37385/JAETS.V5I2.3249.
  34. W. Purwanto, J. C. T. Su, M. L. Rochman, B. Waluyo, K. Krismadinata, and A. Arif, “Study on the Addition of A Swirling Vane to Spark Ignition Engines Fueled by Gasoline and Gasoline-Ethanol,” Automotive Experiences, vol. 6, no. 1, pp. 162–172, 2023, doi: 10.31603/ae.7981.
  35. S. T. P. Purayil, M. O. Hamdan, S. A. B. Al-Omari, M. Y. E. Selim, and E. Elnajjar, “Influence of ethanol–gasoline–hydrogen and methanol–gasoline–hydrogen blends on the performance and hydrogen knock limit of a lean-burn spark ignition engine,” Fuel, vol. 377, p. 132825, Dec. 2024, doi: 10.1016/J.FUEL.2024.132825.
  36. P. S. Yadav, R. Gautam, T. T. Le, N. Khandelwal, A. T. Le, and A. T. Hoang, “A comprehensive analysis of energy, exergy, performance, and emissions of a spark-ignition engine running on blends of gasoline, ethanol, and isoamyl alcohol,” Energy, vol. 307, p. 132548, Oct. 2024, doi: 10.1016/J.ENERGY.2024.132548.
  37. S. Syarifudin, F. L. Sanjaya, F. Fatkhurrozak, M. K. Usman, Y. Sibagariang, and H. Köten, “Effect Methanol, Ethanol, Butanol on the Emissions Characteristics of Gasoline Engine,” Automotive Experiences, vol. 4, no. 2, pp. 62–67, 2020, doi: 10.31603/ae.4641.
  38. A. Verma, N. S. Dugala, and S. Singh, “Experimental investigations on the performance of SI engine with Ethanol-Premium gasoline blends,” Materials Today: Proceedings, vol. 48, pp. 1224–1231, Jan. 2022, doi: 10.1016/J.MATPR.2021.08.255.
  39. B. Li, F. Zhong, R. Wang, Y. Jiang, and Y. Chen, “Experimental and numerical study on a SI engine fueled with gasohol and dissociated methanol gas blends at lean conditions,” Energy, vol. 292, p. 130540, Apr. 2024, doi: 10.1016/J.ENERGY.2024.130540.
  40. D. J. Godwin, E. G. Varuvel, and M. L. J. Martin, “Prediction of combustion, performance, and emission parameters of ethanol powered spark ignition engine using ensemble Least Squares boosting machine learning algorithms,” Journal of Cleaner Production, vol. 421, Oct. 2023, doi: 10.1016/j.jclepro.2023.138401.
  41. Y. Fan, “Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine,” SAE Technical Papers, vol. 2020. 2020, doi: 10.4271/2020-01-0294.
  42. S. Sarjono and M. Mudjijanto, “Experimental study of the use of brown gas HHO (Hydro Hydrogen Oxy) produced by variation of the number of electrodes plates on the performance of a 4-step motor,” BIS Energy and Engineering, vol. 1, pp. V124012–V124012, 2024, doi: 10.31603/biseeng.35.
  43. K. Winangun, A. Setiyawan, G. A. Buntoro, and B. Sudarmanta, “The impact of adding hydrogen on the performance of a CI engine fueled by palm biodiesel,” BIS Energy and Engineering, vol. 1, pp. V124024–V124024, 2024, doi: 10.31603/biseeng.75.
  44. A. Li, Z. Zheng, and T. Peng, “Effect of water injection on the knock, combustion, and emissions of a direct injection gasoline engine,” Fuel, vol. 268, p. 117376, May 2020, doi: 10.1016/J.FUEL.2020.117376.
  45. W. Purwanto, T. Sugiarto, H. Maksum, M. Martias, M. Nasir, and A. Baharudin, “Optimal Design of Rotor Slot Geometry to Reduce Rotor Leakage Reactance and Increase Starting Performance for High-Speed Spindle Motors,” Advances in Electrical and Electronic Engineering, vol. 17, no. 2, pp. 96–105, Jun. 2019, doi: 10.15598/AEEE.V17I2.3170.
  46. M. T. Ulhakim, G. Triyanto, F. Arrozak, R. Huseri, S. Sukarman, and R. Ridwan, “High efficiency process on the salted eggs preparation through the parameters optimization by using taguchi method,” BIS Energy and Engineering, vol. 1, pp. V124017–V124017, 2024, doi: 10.31603/biseeng.46.
  47. W. Warju, S. R. Ariyanto, M. Y. Pratama, and K. R. Haratama, “Optimization of Metallic Catalytic Converters to Reduce CO Emissions and Increase Engine Power,” Automotive Experiences, vol. 7, no. 2, pp. 299–309, Sep. 2024, doi: 10.31603/ae.11587.
  48. Sukarman, A. Abdulah, Jatira, D. A. Rajab, Rohman, C. Anwar, Y. Aminanda, and M. A. Akbar., “Optimization of tensile-shear strength in the dissimilar joint of Zn-coated steel and low carbon steel,” Automotive Experiences, vol. 3, no. 3, pp. 115–125, 2020, doi: 10.31603/ae.v3i3.4053.
  49. S. R. Ariyanto, S. Suprayitno, and R. Wulandari, “Design of Metallic Catalytic Converter using Pareto Optimization to Improve Engine Performance and Exhaust Emissions,” Automotive Experiences, vol. 6, no. 1, pp. 200–2015, Apr. 2023, doi: 10.31603/ae.7977.
  50. A. D. Shieddieque, Sukarman, Mardiyati, B. Widyanto, and Y. Aminanda, “Multi-objective Optimization of Sansevieria Trifasciata FibreReinforced Vinyl Ester (STF/VE) Bio-composites for the Sustainable Automotive Industry,” Automotive Experiences, vol. 5, no. 3, pp. 288–303, 2022, doi: 10.31603/ae.7002.
  51. D. Y. Dhande, N. Sinaga, and K. B. Dahe, “Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine,” Heliyon, vol. 7, no. 3, p. e06380, 2021, doi: 10.1016/j.heliyon.2021.e06380.
  52. Z. Zhang, “Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends,” Energy, vol. 249, 2022, doi: 10.1016/j.energy.2022.123733.
  53. M. Setiyo, Saifudin, A. W. Jamin, R. Nugroho, and D. W. Karmiadji, “The Effect of Ethanol on Fuel Tank Corrosion Rate,” Jurnal Teknologi, vol. 80, no. 6, pp. 19–25, 2018, doi: 10.11113/jt.v80.12324.
  54. A. Alahmer and W. Aladayleh, “Effect two grades of octane numbers on the performance, exhaust and acoustic emissions of spark ignition engine,” Fuel, vol. 180, pp. 80–89, Sep. 2016, doi: 10.1016/J.FUEL.2016.04.025.
  55. Q. Tang, X. Duan, Y. Liu, S. Li, Z. Zhao, K. Ren, Y. Li, and H. Chang., “Experimental study the effects of acetone–butanol–ethanol (ABE), spark timing and lambda on the performance and emissions characteristics of a high-speed SI engine,” Fuel, vol. 279, Nov. 2020, doi: 10.1016/j.fuel.2020.118499.
  56. Y. López, J. Obando, C. Echeverri-Uribe, and A. A. Amell, “Experimental and numerical study of the effect of water injection into the reaction zone of a flameless combustion furnace,” Applied Thermal Engineering, vol. 213, p. 118634, Aug. 2022, doi: 10.1016/J.APPLTHERMALENG.2022.118634.
  57. S. Woo and K. Lee, “Effect of injection strategy and water content on water emulsion fuel engine for low pollutant compression ignition engines,” Fuel, vol. 343, p. 127809, Jul. 2023, doi: 10.1016/J.FUEL.2023.127809.
  58. Z. Lin, S. Liu, Y. Qi, Q. Chen, and Z. Wang, “Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel,” Energy, vol. 289, p. 129998, Feb. 2024, doi: 10.1016/J.ENERGY.2023.129998.
  59. G. Kumar, R. Padhy, D. Das, and S. A. Narayana, “Ethanol Fuel Blending Program in India: Analysis of Environmental, Economic, and Policy Aspects Using System Dynamics Approach,” Journal of Advanced Transportation, vol. 2024, no. 1, p. 2002187, Jan. 2024, doi: 10.1155/2024/2002187.

Most read articles by the same author(s)