Main Article Content

Abstract

The research aims to analyze and reveal combustion characteristics in a Cylindrical Meso Scale (CMS) Combustor with a wire mesh flame holder as a reference for designing a compact, efficient, and high-density energy source for future vehicles. This experiment analyzes the combustion ’s of a butane gas (C4H10)-air mixture in a cylindrical meso-scale (CMS) combustor with the addition of wire mesh flame holder on the stability of the combustion flame, as initiation of future vehicle energy source. The diameter of the CMS combustor with wire mesh flame holder is varied to give an idea of the effect of heat loss on the combustion flame's characteristics. The results show that the wire mesh as a flame holder is essential in the combustion stabilization mechanism. A stable flame can be stabilized in a CMS combustor with wire mesh. Variations in the diameter of the CMS combustor will result in variations in the surface-to-volume ratio, heat loss, and contact area of the wire mesh flame holder. At a large diameter, it produces the characteristics of a combustion flame with a more stable flame stability limit than a smaller diameter, a dimmer flame visualization than a smaller diameter at the same air and fuel discharge, a more distributed flame mode map area than the smaller diameter, lower flame temperature and combustor wall temperature than the smaller diameter, and relatively higher energy output than the smaller diameter.

Keywords

CMS combustor Flame holder Flame stability Future vehicle energy source Wire mesh.

Article Details

References

  1. A. Jannesar Niri, G. A. Poelzer, S. E. Zhang, J. Rosenkranz, M. Pettersson, and Y. Ghorbani, “Sustainability challenges throughout the electric vehicle battery value chain,” Renewable and Sustainable Energy Reviews, vol. 191, p. 114176, Mar. 2024, doi: 10.1016/j.rser.2023.114176.
  2. S. Marianingsih and F. Utaminingrum, “Comparison of Support Vector Machine Classifier and Naïve Bayes Classifier on Road Surface Type Classification,” 3rd International Conference on Sustainable Information Engineering and Technology, SIET 2018 - Proceedings, pp. 48–53, 2018, doi: 10.1109/siet.2018.8693113.
  3. Suyatno, H. Riupassa, S. Marianingsih, and H. Y. Nanlohy, “Characteristics of SI engine fueled with BE50-Isooctane blends with different ignition timings,” Heliyon, vol. 9, no. 1, p. e12922, Jan. 2023, doi: 10.1016/J.HELIYON.2023.E12922.
  4. S. Sikiru, T. T. Dele-Afolabi, M. Yeganeh Ghotbi, and Z. U. Rehman, “Recent advancements in technology projection on electric double layer effect in battery recycling for energy storage,” Journal of Power Sources, vol. 596, p. 234056, Mar. 2024, doi: 10.1016/j.jpowsour.2024.234056.
  5. H. Maghfiroh, O. Wahyunggoro, and A. I. Cahyadi, “Low Pass Filter as Energy Management for Hybrid Energy Storage of Electric Vehicle: A Survey,” Automotive Experiences, vol. 6, no. 3, pp. 466–484, 2023, doi: 10.31603/ae.9398.
  6. A. D. Shieddieque, I. Rahayu, S. Hidayat, and J. A. Laksmono, “Recent Development in LiFePO4 Surface Modifications with Carbon Coating from Originated Metal-Organic Frameworks (MOFs) to Improve the Conductivity of Cathode for Lithium-Ion Batteries: A Review and Bibliometrics Analysis,” Automotive Experiences, vol. 6, no. 3, pp. 438–451, 2023, doi: 10.31603/ae.9524.
  7. J. E, Y. Mei, C. Feng, J. Ding, L. Cai, and B. Luo, “A review of enhancing micro combustion to improve energy conversion performance in micro power system,” International Journal of Hydrogen Energy, vol. 47, no. 53, pp. 22574–22601, Jun. 2022, doi: 10.1016/j.ijhydene.2022.05.042.
  8. S. Sheykhbaglou, A. Ghahremani, S. Tabejamaat, and M. Sánchez-Sanz, “Comparative study of combustion and thermal performance of a meso-scale combustor under co- and counter-rotating fuel and oxidizer swirling flows for micro power generators,” Heliyon, vol. 10, no. 2, p. e24250, Jan. 2024, doi: 10.1016/j.heliyon.2024.e24250.
  9. X. Yu, N. S. Sandhu, Z. Yang, and M. Zheng, “Suitability of energy sources for automotive application – A review,” Applied Energy, vol. 271, p. 115169, Aug. 2020, doi: 10.1016/j.apenergy.2020.115169.
  10. P. Qian et al., “Experimental study on a high efficient and ultra-lean burn meso-scale thermoelectric system based on porous media combustion,” Energy Conversion and Management, vol. 234, p. 113966, Apr. 2021, doi: 10.1016/j.enconman.2021.113966.
  11. B. Bazooyar and H. Gohari Darabkhani, “Analysis of flame stabilization to a thermo-photovoltaic micro-combustor step in turbulent premixed hydrogen flame,” Fuel, vol. 257, p. 115989, Dec. 2019, doi: 10.1016/j.fuel.2019.115989.
  12. J. Wan and A. Fan, “Recent progress in flame stabilization technologies for combustion-based micro energy and power systems,” Fuel, vol. 286, p. 119391, Feb. 2021, doi: 10.1016/j.fuel.2020.119391.
  13. A. Sanata, L. Yuliati, M. N. Sasongko, and I. N. G. Wardana, “Flame behavior inside constant diameter cylindrical meso-scale combustor with different backward facing step size,” Eastern-European Journal of Enterprise Technologies, vol. 2, no. 8–104, pp. 44–51, 2020, doi: 10.15587/1729-4061.2020.197988.
  14. I. Schoegl, V. M. Sauer, and P. Sharma, “Predicting combustion characteristics in externally heated micro-tubes,” Combustion and Flame, vol. 204, pp. 33–48, Jun. 2019, doi: 10.1016/j.combustflame.2019.02.029.
  15. S. N. R. Isfahani, V. M. Sauer, and I. Schoegl, “Effects of dilution and pressure on combustion characteristics within externally heated micro-tubes,” Proceedings of the Combustion Institute, vol. 38, no. 4, pp. 6695–6702, Jan. 2021, doi: 10.1016/j.proci.2020.06.090.
  16. J. Wei et al., “Investigation on hydrogen-fueled combustion characteristics and thermal performance in a micro heat-recirculation combustor inserted with block,” International Journal of Hydrogen Energy, vol. 46, no. 73, pp. 36515–36527, Oct. 2021, doi: 10.1016/j.ijhydene.2021.08.145.
  17. J. Li, H. Xiao, Q. Li, and J. Shi, “Heat recirculation and heat losses in porous micro-combustors: Effects of wall and porous media properties and combustor dimensions,” Energy, vol. 220, p. 119772, Apr. 2021, doi: 10.1016/j.energy.2021.119772.
  18. L. Gao, T. Cai, A. Tang, and H. Liu, “Effect of hetero-/homogenous combustion on energy conversion performances and flame stability of methane/air-fueled micro-combustors with heat-recirculating structure and platinum-coated,” Fuel, vol. 349, p. 128610, Oct. 2023, doi: 10.1016/j.fuel.2023.128610.
  19. M. Bajelani, M. R. Ansari, and E. Nadimi, “A comprehensive study of effective parameters on the thermal performance of porous media micro combustor in thermo photovoltaic systems,” Applied Thermal Engineering, vol. 231, p. 120846, Aug. 2023, doi: 10.1016/j.applthermaleng.2023.120846.
  20. H. Wang, Q. Peng, X. Tian, F. Yan, D. Wei, and H. Liu, “Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media,” Renewable and Sustainable Energy Reviews, vol. 191, p. 114134, Mar. 2024, doi: 10.1016/j.rser.2023.114134.
  21. A. Tolouei and A. Gharehghani, “Numerical investigation of premixed methane-ammonia combustion in a mesoscale porous combustor,” Fuel, vol. 366, p. 131427, Jun. 2024, doi: 10.1016/j.fuel.2024.131427.
  22. E. Lin, C. T. Wilson, A. Leroy, and B. El Fil, “High energy density entrainment-based catalytic micro-combustor for portable devices,” Energy Conversion and Management, vol. 285, p. 117014, Jun. 2023, doi: 10.1016/j.enconman.2023.117014.
  23. A. Mandal, S. Sarkar, A. Chakravarty, and A. Mukhopadhyay, “Flame stabilization and formation of flame street in a H2/Air non-premixed micro-combustor with a bluff body,” International Journal of Hydrogen Energy, vol. 58, pp. 1149–1159, Mar. 2024, doi: 10.1016/j.ijhydene.2024.01.333.
  24. H. Y. Nanlohy, I. N. G. Wardana, N. Hamidi, L. Yuliati, and T. Ueda, “The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets,” Fuel, vol. 220, 2018, doi: 10.1016/j.fuel.2018.02.001.
  25. A. Sanata, I. Sholahuddin, and H. Y. Nanlohy, “Characterization of Biogas as an Alternative Fuel in Micro-Scale Combustion Technology,” International Journal of Integrated Engineering, vol. 15, no. 4, pp. 64–76, 2023, doi: 10.30880/ijie.2023.15.04.006.
  26. S. Cai, W. Yang, and J. Wan, “Combustion and thermal performances of methane-air premixed flame in a novel preheated micro combustor with a flame holder,” International Journal of Thermal Sciences, vol. 197, p. 108813, Mar. 2024, doi: 10.1016/j.ijthermalsci.2023.108813.
  27. J. Wan and H. Zhao, “Flammability limit of methane-air nonpremixed mixture in a micro preheated combustor with a flame holder,” Chemical Engineering Science, vol. 227, p. 115914, Dec. 2020, doi: 10.1016/j.ces.2020.115914.
  28. Q. Peng et al., “Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses,” Energy, vol. 173, pp. 540–547, Apr. 2019, doi: 10.1016/j.energy.2019.02.093.
  29. A. Sanata, I. N. G. Wardana, L. Yuliati, and M. N. Sasongko, “Effect of Backward Facing Step On Combustion Stability in a Constant Contact Area Meso-Scale Combustor,” Eastern-European Journal of Enterprise Technologies, vol. 1, no. 8 (97), pp. 51–59, 2019, doi: 10.15587/1729-4061.2019.149217.
  30. Q. Li, J. Li, J. Shi, and Z. Guo, “Effects of heat transfer on flame stability limits in a planar micro-combustor partially filled with porous medium,” Proceedings of the Combustion Institute, vol. 37, no. 4, pp. 5645–5654, Jan. 2019, doi: 10.1016/j.proci.2018.06.023.
  31. H. Y. Nanlohy, I. N. G. Wardana, M. Yamaguchi, and T. Ueda, “The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets,” Fuel, vol. 279, p. 118373, 2020, doi: 10.1016/j.fuel.2020.118373.
  32. X. Hu, Z. Shen, and Y. Wang, “On the design of a hydrogen micro-rectangular combustor for portable thermoelectric generators,” Chemical Engineering and Processing - Process Intensification, vol. 195, p. 109611, Jan. 2024, doi: 10.1016/j.cep.2023.109611.
  33. F. Tohidi, S. Ghazanfari Holagh, and A. Chitsaz, “Thermoelectric Generators: A comprehensive review of characteristics and applications,” Applied Thermal Engineering, vol. 201, p. 117793, Jan. 2022, doi: 10.1016/j.applthermaleng.2021.117793.
  34. J. Li, J. E, J. Ding, L. Cai, and B. Luo, “Effect analysis on combustion performance enhancement of the hydrogen-fueled micro-cylindrical combustors with twisted tapes for micro-thermophotovoltaic applications,” International Journal of Hydrogen Energy, vol. 49, pp. 725–743, Jan. 2024, doi: 10.1016/j.ijhydene.2023.09.041.
  35. P. Abbaspour and A. Alipoor, “Numerical study of wavy-wall effects on premixed H2/air flammability limits, propagation modes, and thermal performance of micro combustion chambers,” Applied Energy, vol. 359, p. 122727, Apr. 2024, doi: 10.1016/j.apenergy.2024.122727.
  36. C. Zhang et al., “Numerical study on combustion characteristics and heat transfer enhancement of the micro combustor embedded with Y-shaped fin for micro thermo-photovoltaic system,” Applied Thermal Engineering, vol. 211, p. 118427, Jul. 2022, doi: 10.1016/j.applthermaleng.2022.118427.
  37. E. K. Quaye, J. Pan, Q. Lu, Y. Zhang, and Y. Wang, “Combustion optimization in consolidated porous media for thermo-photovoltaic system application Using Response Surface Methodology,” International Journal of Thermal Sciences, vol. 184, p. 107950, Feb. 2023, doi: 10.1016/j.ijthermalsci.2022.107950.
  38. X. Yang, B. Yu, X. Peng, and H. Zhou, “Investigation of thermal performance and energy conversion in a novel planar micro-combustor with four-corner entrances for thermo-photovoltaic power generators,” Journal of Power Sources, vol. 515, p. 230625, Dec. 2021, doi: 10.1016/j.jpowsour.2021.230625.
  39. G. Yang and A. Fan, “Experimental study on combustion characteristics of n-C4H10/air mixtures in a meso-scale tube partially filled with wire mesh,” Fuel, vol. 319, p. 123783, Jul. 2022, doi: 10.1016/j.fuel.2022.123783.
  40. C. Jiang, J. Pan, H. Yu, Y. Zhang, Q. Lu, and E. K. Quaye, “Effects of mixing ozone on combustion characteristics of premixed methane/oxygen in meso-scale channels,” Fuel, vol. 312, p. 122792, Mar. 2022, doi: 10.1016/j.fuel.2021.122792.
  41. L. Cai, J. E, J. Li, J. Ding, and B. Luo, “A comprehensive review on combustion stabilization technologies of micro/meso-scale combustors for micro thermophotovoltaic systems: Thermal, emission, and energy conversion,” Fuel, vol. 335, p. 126660, Mar. 2023, doi: 10.1016/j.fuel.2022.126660.
  42. J. Tong, T. Cai, and D. Zhao, “Optimizing thermal performances and NOx emission in a premixed ammonia-hydrogen blended meso-scale combustor for thermophotovoltaic applications,” International Journal of Hydrogen Energy, vol. 48, no. 77, pp. 30191–30204, Sep. 2023, doi: 10.1016/j.ijhydene.2023.04.163.
  43. B. Luo, J. Chen, J. E, G. Liao, F. Zhang, and J. Ding, “Effects of different channels on performance enhancement of a nozzle hydrogen-fueled micro combustor for micro-thermophotovoltaic applications,” International Journal of Hydrogen Energy, vol. 48, no. 54, pp. 20743–20761, Jun. 2023, doi: 10.1016/j.ijhydene.2023.03.025.
  44. X. Zhu, Z. Zhao, Z. Zuo, B. Jia, W. Wang, and P. Xu, “Experimental studies on the role of thermoelectric module structure in developing a powerful miniature power generator with a meso-scale opposed flow porous combustor,” Applied Thermal Engineering, vol. 230, p. 120586, Jul. 2023, doi: 10.1016/j.applthermaleng.2023.120586.
  45. C. Zhang, Y. Yan, K. Shen, Z. Xue, J. You, and Z. He, “Comparative analysis of combustion stability and flow performance in micro combustor based on the synergistic action of slotted blunt body and front-baffle,” Applied Thermal Engineering, vol. 237, p. 121802, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121802.

Most read articles by the same author(s)