Main Article Content

Abstract

This study aims to reveal the performance and exhaust emissions of a spark ignition (SI) engine fueled by a gasoline-bioethanol mixture. The main performance characteristics of the SI engine tested are torque, power output; thermal efficiency, brake specific fuel consumption, and brake mean effective pressure. Meanwhile, the exhaust emissions seen are carbon monoxide and hydrocarbons. The test is carried out by comparing the performance of the SI engine under standard conditions without modification with gasoline fuel, with the SI engine with modification with 85% bioethanol fuel. The mass flow of fuel is regulated by modifying the carburetor choke at 3/4 and 7/8. The results show that although slightly lower than gasoline, in general, it can be seen that bioethanol can improve SI engine performance and produce environmentally friendly exhaust emissions.

Keywords

Bioethanol Gasoline Engine performance Exhaust emissions Fuel mass flow

Article Details

References

  1. D. Londoño-Pulgarin, G. Cardona-Montoya, J. C. Restrepo, and F. Muñoz-Leiva, “Fossil or bioenergy? Global fuel market trends,” Renewable and Sustainable Energy Reviews, vol. 143, no. February, 2021, doi: 10.1016/j.rser.2021.110905.
  2. S. Adams, F. Adedoyin, E. Olaniran, and F. V. Bekun, “Energy consumption, economic policy uncertainty and carbon emissions; causality evidence from resource rich economies,” Economic Analysis and Policy, vol. 68, pp. 179–190, 2020, doi: 10.1016/j.eap.2020.09.012.
  3. M. A. Aktar, M. M. Alam, and A. Q. Al-Amin, “Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19,” Sustainable Production and Consumption, vol. 26, pp. 770–781, 2021, doi: 10.1016/j.spc.2020.12.029.
  4. H. Purnama, I. V Hartoko, M. Mujiburohman, and N. Hidayati, “Effect of graphene oxide on the characteristics of speek-chitosan membranes for direct methanol fuel cells,” Automotive Experiences, vol. 3, no. 1, pp. 1–5, 2020, doi: 10.31603/ae.v3i1.3039.
  5. F. B. Elehinafe, O. B. Okedere, Q. E. Ebong-Bassey, and J. A. Sonibare, “Data on Emission Factors of Gaseous Emissions from Combustion of Woody Biomasses as Potential Fuels for Firing Thermal Power Plants in Nigeria,” Mechanical Engineering for Society and Industry, vol. 1, no. 2, pp. 75–82, 2021, doi: 10.31603/mesi.5548.
  6. A. Kolakoti, M. Setiyo, and B. Waluyo, “Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization,” Mechanical Engineering for Society and Industry, vol. 1, no. 1, pp. 22–30, 2021.
  7. M. Setiyo, D. Yuvenda, and O. D. Samuel, “The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis,” Indonesian Journal of Science and Technology, vol. 6, no. 3, pp. 469–490, 2021, doi: 10.17509/ijost.v6i3.38430.
  8. M. Wahyu, H. Rahmad, and G. J. Gotama, “Effect of Cassava Biogasoline on Fuel Consumption and CO Exhaust Emissions,” Automotive Experiences, vol. 2, no. 3, pp. 97–103, 2019, doi: https://doi.org/10.31603/ae.v2i3.2991 Published.
  9. M. Renzi, M. Bietresato, and F. Mazzetto, “An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends,” Energy, vol. 115, pp. 1069–1080, 2016, doi: 10.1016/j.energy.2016.09.050.
  10. R. A. Alenezi, Erdiwansyah, R. Mamat, A. M. Norkhizan, and G. Najafi, “The effect of fusel-biodiesel blends on the emissions and performance of a single cylinder diesel engine,” Fuel, vol. 279, no. X, 2020, doi: 10.1016/j.fuel.2020.118438.
  11. S. Mujiarto, B. Sudarmanta, H. Fansuri, and A. R. Saleh, “Comparative Study of Municipal Solid Waste Fuel and Refuse Derived Fuel in the Gasification Process Using Multi Stage Downdraft Gasifier,” Automotive Experiences, vol. 4, no. 2, pp. 97–103, 2021.
  12. D. Singh et al., “A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas,” Fuel, vol. 285, no. April 2020, p. 119110, 2021, doi: 10.1016/j.fuel.2020.119110.
  13. S. Syarifudin, F. L. Sanjaya, F. Fatkhurrozak, M. K. Usman, Y. Sibagariang, and H. Köten, “Effect Methanol, Ethanol, Butanol on the Emissions Characteristics of Gasoline Engine,” Automotive Experiences, vol. 4, no. 2, pp. 62–67, 2020, doi: 10.31603/ae.4641.
  14. M. Göktaş, M. Kemal Balki, C. Sayin, and M. Canakci, “An evaluation of the use of alcohol fuels in SI engines in terms of performance, emission and combustion characteristics: A review,” Fuel, vol. 286, no. July 2020. doi: 10.1016/j.fuel.2020.119425.
  15. M. K. Mohammed, H. H. Balla, Z. M. H. Al-Dulaimi, Z. S. Kareem, and M. S. Al-Zuhairy, “Effect of ethanol-gasoline blends on SI engine performance and emissions,” Case Studies in Thermal Engineering, vol. 25, no. May 2020, p. 100891, 2021, doi: 10.1016/j.csite.2021.100891.
  16. S. Shirvani, S. Shirvani, A. H. Shamekhi, and R. D. Reitz, “A study of using E10 and E85 under direct dual fuel stratification (DDFS) strategy: Exploring the effects of the reactivity-stratification and diffusion-limited injection on emissions and performance in an E10/diesel DDFS engine,” Fuel, vol. 275, no. April, p. 117870, 2020, doi: 10.1016/j.fuel.2020.117870.
  17. Z. Guo et al., “Research on the combustion and emissions of an SI engine with acetone-butanol-ethanol (ABE) port injection plus gasoline direct injection,” Fuel, vol. 267, no. February, p. 117311, 2020, doi: 10.1016/j.fuel.2020.117311.
  18. A. Biswal, S. Gedam, S. Balusamy, and P. Kolhe, “Effects of using ternary gasoline-ethanol-LPO blend on PFI engine performance and emissions,” Fuel, vol. 281, no. July, p. 118664, 2020, doi: 10.1016/j.fuel.2020.118664.
  19. Q. Tang, P. Jiang, C. Peng, H. Chang, and Z. Zhao, “Comparison and analysis of the effects of spark timing and lambda on a high-speed spark ignition engine fuelled with n-butanol/gasoline blends,” Fuel, vol. 287, no. August, p. 119505, 2021, doi: 10.1016/j.fuel.2020.119505.
  20. A. K. Thakur, A. K. Kaviti, R. Mehra, and K. K. S. Mer, “Progress in performance analysis of ethanol-gasoline blends on SI engine,” Renewable and Sustainable Energy Reviews, vol. 69, no. December 2015, pp. 324–340, 2017, doi: 10.1016/j.rser.2016.11.056.
  21. S. M. Sarathy, A. Farooq, and G. T. Kalghatgi, “Recent progress in gasoline surrogate fuels,” Progress in Energy and Combustion Science, vol. 65, pp. 67–108, 2018, doi: 10.1016/j.pecs.2017.09.004.
  22. Z. Liu, P. Sun, Y. Du, X. Yu, W. Dong, and J. Zhou, “Improvement of combustion and emission by combined combustion of ethanol premix and gasoline direct injection in SI engine,” Fuel, vol. 292, no. November 2020, p. 120403, 2021, doi: 10.1016/j.fuel.2021.120403.
  23. A. Elfasakhany, “Gasoline engine fueled with bioethanol-bio-acetone-gasoline blends: Performance and emissions exploration,” Fuel, vol. 274, no. April, p. 117825, 2020, doi: 10.1016/j.fuel.2020.117825.
  24. B. Sayin Kul and M. Ciniviz, “An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends,” Fuel, vol. 286, no. P2, p. 119375, 2021, doi: 10.1016/j.fuel.2020.119375.
  25. I. Schifter, U. González, L. Díaz, R. Rodríguez, I. Mejía-Centeno, and C. González-Macías, “From actual ethanol contents in gasoline to mid-blends and E-85 in conventional technology vehicles. Emission control issues and consequences,” Fuel, vol. 219, no. January, pp. 239–247, 2018, doi: 10.1016/j.fuel.2018.01.118.
  26. H. Y. Nanlohy, “Perbandingan Variasi Derajat Pengapian Terhadap Efisiensi Thermal Dan Konsumsi Bahan Bakar Otto Engine BE50,” Dinamika, vol.3, no.2 pp. 1–4, 2012.
  27. X. Duan, M. Lai, M. Jansons, G. Guo, and J. Liu, “A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition ( HCCI ) engine,” Fuel, vol. 285, no. May 2020, p. 119142, 2021, doi: 10.1016/j.fuel.2020.119142.
  28. R. K. Prasad, N. Mustafi, and A. K. Agarwal, “Effect of spark timing on laser ignition and spark ignition modes in a hydrogen enriched compressed natural gas fuelled engine,” Fuel, vol. 276, no. May 2019, p. 118071, 2020, doi: 10.1016/j.fuel.2020.118071.
  29. I. Schifter, L. Diaz, J. P. Gómez, and U. Gonzalez, “Combustion characterization in a single cylinder engine with mid-level hydrated ethanol-gasoline blended fuels,” Fuel, vol. 103, pp. 292–298, 2013, doi: 10.1016/j.fuel.2012.06.002.
  30. P. Chansauria and R. K. Mandloi, “Effects of Ethanol Blends on Performance of Spark Ignition Engine-A Review,” Materials Today: Proceedings, vol. 5, no. 2, pp. 4066–4077, 2018, doi: 10.1016/j.matpr.2017.11.668.